
1

Ambitious Data Science Can Be Painless
Hatef Monajemi1,2, Riccardo Murri3, Eric Jonas4, Percy Liang5, Victoria Stodden6, and David

Donoho†,1

Abstract— Modern data science research, at the cutting
edge, can involve massive computational experimentation;
an ambitious PhD in computational fields may conduct
experiments consuming several million CPU hours. Tra-
ditional computing practices, in which researchers use
laptops, PCs, or campus-resident resources with shared
policies, are awkward or inadequate for experiments at the
massive scale and varied scope that we now see in the most
ambitious data science. On the other hand, modern cloud
computing promises seemingly unlimited computational
resources that can be custom configured, and seems to offer
a powerful new venue for ambitious data-driven science.
Exploiting the cloud fully, the amount of raw experimental
work that could be completed in a fixed amount of calendar
time ought to expand by several orders of magnitude.
Still, at the moment, starting a massive experiment using
cloud resources from scratch is commonly perceived as
cumbersome, problematic, and prone to rapid ‘researcher
burnout.’

New software stacks are emerging that render massive
cloud-based experiments relatively painless, thereby allow-
ing a proliferation of ambitious experiments for scientific
discovery. Such stacks simplify experimentation by system-
atizing experiment definition, automating distribution and
management of all tasks, and allowing easy harvesting of
results and documentation. In this article, we discuss three
such painless computing stacks. These include CodaLab,
from Percy Liang’s lab in Stanford Computer Science;
PyWren, developed by Eric Jonas in the RISELab at UC
Berkeley; and the ElastiCluster-ClusterJob stack developed
at David Donoho’s research lab in Stanford Statistics in
collaboration with the University of Zurich.

Keywords: Ambitious Data Science, Painless Comput-
ing Stacks, Cloud Computing, Experiment Manage-
ment System, Massive Computational Experiments

I. Introduction
Tremendous increases in the availability of raw com-

puting power in recent years promise a new era in
computational science and engineering. Amazon, IBM,
Microsoft, and Google now make massive and versatile
compute resources available on demand via their cloud
infrastructure. In principle, it should be possible for an
enterprising researcher to individually conduct ambi-
tious computational experiments consuming millions

† Corresponding Author, donoho@stanford.edu
1 Dept. of Statistics, Stanford University
2 Data Science Institute, Stanford University
3 S3IT, University of Zurich
4 Dept. of Computer Science, University of California Berkeley
5 Dept. of Computer Science, Stanford University
6 School of Information, University of Illinois Urbana-Champaign

of CPU hours within calendar time scales of days or
weeks.

The newly available resources could easily accom-
modate many thousands of such enterprising research
projects. If there were a widespread movement by
researchers to pursue this opportunity, it seems we
should soon witness the emergence of widespread mas-
sive computational experimentation as a fundamen-
tal avenue towards scientific progress, complementing
traditional avenues of induction (in observational sci-
ences) and deduction (in mathematical sciences) (Hey,
Tansley, & Tolle, 2009; Monajemi, Donoho, & Stodden,
2017). Indeed, there have been recent calls and reports
by national research and funding agencies such as
NSF, NIH, and NRC for the greater adoption of cloud
computing and Massive Computational Experiments
(MCEs) in scientific research (CSSI, 2019; EACC, 2018;
NIH, 2018; NRC, 2013; Rexford, Balazinska, Culler, &
Wing, 2018; STRIDES, 2018).

In some fields, this emergence is already quite pro-
nounced. The current remarkable wave of enthusiasm
for machine learning (and its deep learning variety)
seems, to us, evidence that massive computational
experimentation has begun to pay off – big time. Deep
neural networks have been around for the better part
of 30 years, but only in recent years have they been able
to successfully penetrate in certain applications. What
changed recently is that researchers at the cutting edge
can experiment extensively with tuning such nets and
refactoring them. The computational effort to produce
annual state of the art AI systems scaled up by more
than 300,000x over the last six years (OpenAI, 2018).

With the ability to conduct extensive trial and error
searches, dramatic improvements in predictive accu-
racy over older methods have been found, thereby
changing the game. Recent experimental successes of
machine learning have disrupted field after field. In
machine translation, many major players, including
Google and Microsoft, moved away recently from
Statistical Machine Translation (SMT) to Neural Ma-
chine Translation (NMT) (Lewis-Kraus, 2016; Microsoft
Translator, 2016). Similar trends can be found in com-
puter vision (Krizhevsky, Sutskever, & Hinton, 2012;
Simonyan & Zisserman, 2014). Tesla Motors predom-
inantly uses deep networks in automated decision-
making systems, according to Andrej Karpathy, head

TABLE I
Features of the Painless Computing Stacks Presented in This Paper1

ElastiCluster/ClusterJob CodaLab PyWren
Scientific Service Layer Interface Interface Framework
Service Type EMS EMS Serverless Execution
Input Script Script Function/Values
Language Python/R/Matlab Agnostic Python
Server Provisioning Yes Yes N/A
Resource Manager SLURM/SGE Agnostic FaaS3

Job Submission Yes Yes Yes
Job Management Yes Yes N/A
Auto Script Parallelization2 Yes No No
Auto Mimic No Yes No
Auto Storage No Yes No
Experiment Documentation Yes Yes No
Reproducible Yes Yes Yes

1 This table includes available features as of December 2018.
2 For embarrassingly parallel scripts only. See Section V-C for a definition of an embarrassingly
parallel script.
3 FaaS (Functions-as-a-Service) is a collective name to designate cloud services such as
AWS Lambda, Google Cloud Functions, or Azure Functions where server provisioning is
hidden from the user and done automatically by the provider.

of AI research1.
In machine learning problems where computational

ambitions have scaled most rapidly, we witness a
change not just in the performance of predictive mod-
els, but in the scientific process itself. Years ago, the
path to progress was typically “use a better mathemat-
ical model for the situation.” Today’s path seems to
be: first, to “exploit a bigger database;” and next, to
“experiment with different approaches until you find a
better way.”2

Even outside machine learning contexts we can see
massive experimentation solving complex problems ly-
ing beyond the reach of any theory. Examples include:
• in (Brunton, Proctor, & Kutz, 2016), the authors

used data to discover governing equations of vari-
ous dynamical systems including the strongly non-
linear Lorenz-63 model;

• in (Monajemi, Jafarpour, Gavish, Collaboration, &
Donoho, 2013) and (Monajemi & Donoho, 2018),
the authors expended several million CPU hours
to develop fundamentally more practical sensing
methods in the area of Compressed Sensing;

• in (Huang et al., 2015), MCEs solved a 30-year-old
puzzle in the design of a particular protein;

• in (Shirangi, 2019) the author conducted 9.5 million
reservoir simulations (320,000 CPU-hours) to im-
prove upon state-of-the-art oil field development.

In the emerging paradigm for ambitious data sci-
ence, researchers may launch and manage historically
unprecedented numbers of computational jobs (e.g.,
possibly even millions of jobs).

Hearing examples of such dramatic (e.g., 10,000x) in-
creases in computational ambition, researchers trained
in an older paradigm of interactive ‘personal’ comput-
ing might envision a protracted, painful process involv-

1Source: a public lecture titled “Software 2.0” by Karpathy, at
Stanford’s Computer Science department on January 17, 2018.

2Even in Academic Psychology! see:Yarkoni and Westfall (2017)

ing many moving parts and manual interactions with
complex cloud services. Undertaking computations in
such fashion at such massive scale would indeed be
infeasible.

This paper presents several emerging software stacks
that minimize the difficulties of conducting MCEs in
the cloud. These stacks offer high-level support for
MCEs, masking almost all of the low-level computa-
tional and storage details.

II. Cloud to the rescue

We have argued that today’s most ambitious data
scientists now plan projects consuming millions of CPU
hours, spread across many thousands of jobs.

Traditional computing approaches, in which re-
searchers use their personal computers or campus-wide
shared HPC clusters, can be inadequate for such am-
bitious studies: laptop and desktop computers simply
cannot provide the necessary computing power; shared
HPC clusters, which are still the dominant paradigm
for computational resources in academia today, are
becoming more and more limiting because of the mis-
match between the variety and volume of computa-
tional demands, and the inherent inflexibility of provi-
sioning compute resources governed by capital expen-
ditures. For example, Deep Learning (DL) researchers
who depend on fixed departmental or campus-level
clusters face a serious obstacle: today’s DL demands
heavy use of GPU accelerators, but researchers can
find themselves waiting for days to get access to such
resources, as GPUs are rare commodities on many
general-purpose clusters at present.

In addition, shared HPC clusters are subject to
fixed policies while different projects may have com-
pletely different (and even conflicting) requirements.
As an example of a policy decision that leads to a
unsatisfactory distribution of resources, consider an

2

TABLE II
In-House HPC Cluster vs. Cloud

Type Pros Cons
Cloud

• Immediate on-demand access (no competition with others)
• Programmatic access (Infrastructure as Code)
• Highly scalable
• Highly reliable
• Flexible (user chooses cluster configuration)
• Users determines policies
• No large upfront investment (pay per use)
• Complete access as root for software installation
• Lower energy consumption per processing hour
• No need to buy hardware or space

• Lack of financial incentive in academia (possibly wrongly
aligned with budget requirements)

• Explicit resource management and vulnerability to over-
charge (e.g., shutdown VMs after use)

• Data transfer and networking costs (not always fully ap-
parent)

• Cloud services APIs may be difficult to use (without EMS)

In-House
HPC Cluster • Usually free or very low cost (often subsidized by univer-

sities through overhead tax)
• Software stacks are typically managed by dedicated per-

sonnel
• Data transfer and networking is free
• User support included in the service

• Typically not scalable (limited resources)
• Long waiting time for resources (competition with others)
• Fixed policies as directed by administration
• No root access
• No financial incentive to provide quality user experience

organization providing clusters with expensive low-
latency/high-speed networking. Such an organization
would naturally want to maximize the return of its
investment; as a result, they may set a fixed policy that
incentivizes tightly-coupled parallel jobs to maximize
the use of the low-latency network. Consequently, this
policy penalizes “embarassingly parallel” workloads
and disappoints the users who run such workloads.

On the other hand, the advent of cloud computing
offers instant on-demand access to virtually unlimited
computational resources that can be custom configured to
satisfy the needs of individual research projects. Google
Cloud Platform (GCP), Amazon Web Services (AWS),
Microsoft Azure, and other cloud providers now offer
easy access to a large array of virtual machines that
cost pennies per CPU hour, making it possible for
individual research groups to perform 1 million CPU
hours of computation over a few calendar days at a
retail cost on the order of 10,000 dollars. The cloud
providers also offer access to GPUs in volume for as
low as 45 cents/hour/GPU, making them an affordable
medium for deep learning research.

The cloud thus offers several advantages over tradi-
tional HPC clusters:
• Scalability and Speed. With millions of servers

spread across the globe, cloud providers today
own the biggest computing infrastructures in the
world. Therefore, any research group with suffi-
cient research funding can almost instantly scale
out its computational tasks to thousands of cores
without having to wait in a long queue on a shared
HPC cluster.

• Flexibility. Researchers can adjust the number and
configuration of compute nodes depending on
their individual computational needs.

• Reliability. Public cloud infrastructures were ini-
tially built by large IT companies for their own
needs and are now relied upon by millions of busi-
nesses all over the world for their daily computing

needs — they are thus monitored 24/7 and offer
excellent uptime and reliability. A good example
is Netflix that now operates fully on AWS. In fact,
Netflix originally decided to migrate entirely to
AWS because the cloud offered a more reliable
infrastructure (Izrailevsky, 2016).

Table II provides a more comprehensive comparison
of cloud versus in-house HPC clusters.

Despite massive use of the cloud by business, and the
cloud’s great potential for hosting ambitious computa-
tional studies, many academic institutions and research
groups have not yet widely adopted the cloud as a
computational resource and continue to use personal
computers or in-house shared HPC clusters. We be-
lieve that much of the in-house computing inertia
is due to the perceived complexity of doing mas-
sive computational experiments in the cloud. Users
schooled in the interactive personal computing model
that dominated academic computing in the 1990-2010
period are psychologically prepared to see computing
as a very hands-on process. This hands-on viewpoint
sees a large computing experiment in terms of the
many underlying individual computers, file systems,
management layers, files, and processes. Users coming
from that background may expect MCEs to require
raw unassisted manual interaction with these moving
parts, and would probably anticipate that such manual
interaction would be very problematic to complete, as
there could be many missteps and misconfigurations in
carrying out such a complex procedure.

If, truly, the cloud-based experiments involved such
manual interaction, the process would at best be ex-
hausting and at worst painful. The many possible prob-
lems that could crop up in managing processes manu-
ally at the indicated scale would likely be experienced
as an overwhelming drag, sapping the experimenter’s
desire to persevere. Even once the experiment was
completed, the burden of having conducted it would
likely cast a longer shadow, having drained the ana-

3

lyst’s energy and clarity of purpose, thereby reducing
their ability to think clearly about the results.

Summing up, such negative perspectives on cloud-
based experiments stem from: the perceived complexity
of today’s cloud computing interfaces, the perceived
difficulty of managing an unprecedentedly large num-
ber of computational jobs, and the unmet challenge
of ensuring that the results of the experiments can be
understood and/or reproduced by other independent
scientists.

In addition to obstacles listed above for cloud adop-
tion in academia, there may be other barriers such as
apparent lack of financial incentives for cloud use in
today’s academic funding system, university overhead
charges, uncertainty about privacy restrictions, and
others, as discussed in detail in Rexford et al. (2018).
We hope that such barriers will be removed as more
academics adopt the cloud for computational research.

III. Automation in Data Science
Proper automation of computational research activi-

ties (Waltz & Buchanan, 2009) offers a compelling way
to make massive computational experiments painless
and reproducible. In fact the vision dates back more
than 50 years.

In particular, in his seminal paper “The Future of
Data Analysis,” John Tukey (1962) called for the use of
automation in data analysis, arguing against the critics
of automation (see his Section 17) that:
• Properly automated tools encourage busy data

analysts to study the data more
• Automation of known procedures provide data

analysts with the time and the stimulation to try
out new procedures, and

• It is much easier to intercompare automated pro-
cedures.

Tukey could not have foreseen the modern context
for such automation, which we now formalize. As we
see it, an ambitious data science study involves:

1) Precise specification of an experiment, which in-
cludes defining performance metrics and a range
of systems to be studied.

2) Distribution, execution, and monitoring of all the
jobs implicitly required in 1).

3) Harvesting of all the data produced in 2).
4) Analysis of the data collected in 3).
5) Iterations of steps (1-4) to run new jobs that may

be suggested or required by the results obtained
in 4).

6) Reporting and dissemination of acquired knowl-
edge.

Additionally, the underlying experiment, to be con-
sidered ambitious, may involve either ambitious scale
in the data storage, the computations, or both.

As must now be apparent, to operate at an ambitious
level, it is crucial to automate all these steps and
integrate them seamlessly.

In this article, we describe a few examples of soft-
ware stacks that facilitate such automation; we call
them Experiment Management Systems (EMSs). Exam-
ples we discuss include CodaLab Worksheets (Liang et
al., 2014) and ClusterJob (Monajemi & Donoho, 2015),
which are discussed in detail later in the paper. More
generally, we use the phrase Painless Computing Stack
(PCS) to refer to a software stack that abstracts away
the difficulties of doing large-scale computation on
remote computing infrastructures3.

As we have already argued in the previous section,
unassisted cluster computing (i.e., without EMS assis-
tance) would indeed be painful and draining. Con-
sider a scientist wanting to spread an ambitious work-
load across multiple shared clusters available via the
XSEDE4 ecosystem. We can envision the scientist using
traditional practices quickly becoming frustrated with
differences in policies, software environment, choice
of scheduler, submission rules, licensing differences
(Stodden, 2009), and other requirements for different
clusters. Refactoring existing properly working single-
processor ‘laptop-scale’ scripts might also be required,
imposing an extra development and source code man-
agement burden for the scientist. Finally, merely keep-
ing track of progress on each of several different clus-
ters could be distracting and confusing. Crucially, com-
putational reproducibility is a core requirement of scien-
tific data science, because the scientific context requires
trust in computational findings and safeguards against
possible errors. Ensuring that computations done on
a cluster can be reproduced at a later time requires
additional important considerations often neglected
when manual intervention is involved (Berman et al.,
2018; Donoho, Maleki, Rahman, Shahram, & Stodden,
2009; Stodden et al., 2016; Stodden, Seiler, & Ma, 2018).
Fortunately, the advent of open-source container tech-
nologies such as Docker (Merkel, 2014) and Singularity
(G. M. Kurtzer, 2017), language-agnostic package man-
agers such as Conda (Conda, 2012), and common data
platforms such as Google’s dataCommons (https://
datacommons.org) provides a path for facilitating
reproducibility in ambitious cloud experiments.

The common vision motivating the development of
the several PCS’s we describe below (see section V) is
that such draining and ultimately confusing demands
be abstracted away. This increase in abstraction ought
to encourage a proliferation of ever more ambitious
experiments, while enabling better clarity of interpre-
tation, better reproducibility, and ultimately better sci-
ence.

IV. A Taxonomy of Services for Scientific Computing
in the Cloud

To better describe how computing stacks presented
in the next section interact with cloud infrastructures,

3See section IV for a finer-grained classification of these systems.
4https://www.xsede.org/ecosystem/resources

4

https://datacommons.org
https://datacommons.org

 Infrastructure

 Execution

 Framework

 Interface

 IaaS

 PaaS

 SaaS ClusterJob, CodaLab,
TissueMAPS, JupyterHub

ElastiCluster, PyWren,
Tensorflow, Spark, MPI

Clusters, Hadoop,
SLURM, Kubernetes

Virtualized or Physical
Compute Resources

Fig. 1. The layering of services for scientific computing in the cloud (middle) with some examples (left), compared to the NIST
classification (Mell & Grance, 2011) of cloud-based IT services (right).

we propose a taxonomy of currently available services
for doing scientific computing in the cloud. The reader
should keep in mind that the PCS’s presented in this
article are not necessarily cloud-based, and can well be
used in traditional on-premises HPC clusters. We how-
ever believe that the coupling of these systems with
cloud infrastructures results in greater advantages for
scientific research by enabling very large computational
experiments.

In 2011, NIST introduced (Mell & Grance, 2011) a
widely-accepted classification of services offered by
cloud providers into three layers:
• Infrastructure-as-a-Service (IaaS): provisioning of

compute, storage, networking or other fundamen-
tal computing resources. Google Cloud Engine or
AWS EC2 are IaaS examples.

• Platform-as-a-Service (PaaS): high-level frameworks
and tools to create and run applications on the
cloud infrastructure; Google App Engine is a PaaS
example that allows developers to easily build
and deploy scalable applications without manag-
ing cloud infrastructure.

• Software-as-a-Service (SaaS): end-user applications,
whose interface (accessed programmatically or
through a web client) is tailored to specific tasks.
Gmail and Dropbox are familiar SasS examples.

Scientific computing services typically fall under
PaaS or SaaS in the NIST definition; we will introduce a
finer-grained classification applicable to scientific com-
puting applications (see Figure 1):

1) Execution layer: in our definition, this is the bottom
layer and includes services that can take and
run a user-provided program, possibly together
with some specification of the raw computing
resources needed at runtime (e.g., number of
CPU cores, amount of RAM). Examples are batch-

computing clusters, Hadoop/YARN clusters, con-
tainer orchestration systems such as Mesos or
Kubernetes, and serverless computing services
such as AWS Lambda and Azure Functions.

2) Framework layer: This layer sits on top of the
execution layer and provides users with a way to
describe computation in a way that is dictated by
an abstract computation model – independent of
the raw computing resources actually used. The
purpose of the framework layer is to map the
abstract computation graph onto a format that can
be understood by the execution layer. Examples
of software in the framework layer are PyWren
[see (Jonas, Pu, Venkataraman, Stoica, & Recht,
2017) and Section V-C later in this paper], Apache
Spark (Zaharia, Chowdhury, Franklin, Shenker, &
Stoica, 2010), TensorFlow (Abadi et al., 2016), MPI
(MPI Forum, 2015; Walker & Dongarra, 1996), and
GC3Pie (Maffioletti & Murri, 2012).

3) Interface layer: This layer is the topmost layer in
our taxonomy and includes services tailored to a
specific set of tasks, masking almost all the details
of actual computation and storage management.
Examples are ClusterJob (Monajemi & Donoho,
2015) (see Section V-A), CodaLab (Liang et al.,
2014) (see Section V-B), and TissueMAPS (an inte-
grated platform for large-scale microscope image
analysis) (Herrmann, 2017).

V. Painless Computing Stacks

In this section, we present several examples of com-
puting stacks that we consider relatively pain-free for
doing large-scale data science studies in the cloud.
Table I provides a list of key features for these systems.

In some cases, these systems permit ambitious ex-
periments that otherwise would be inconceivable to

5

Fig. 2. Elasticluster-ClusterJob stack first provisions a personal
cluster in the cloud using ElastiCluster, and then links ClusterJob
to this cluster to run ambitious experiments involving many parallel
jobs. Experiments are documented reproducibly, and can be retrieved
at a later time via ClusterJob interface. This stack is agnostic to the
choice of cloud provider and programming language.

conduct. In some other cases, they render experimenta-
tion painless, thereby allowing scientists to experiment
more. An exact assessment of the extent to which
experimentation pain is removed when these stacks
are used is beyond the scope of the current article
and requires further investigation. Anecdotal evidence
from scientists in different disciplines has shown a sub-
stantial degree of ease and efficiency in experimental
research where these tools are exploited.

A. ElastiCluster-ClusterJob Stack

This stack leverages two different components to
conduct massive experiments in the cloud: it first pro-
visions services at the execution layer and then exploits
services at the interface layer to run the actual compute
payload. We are focusing in particular on ElastiCluster
(Murri et al., 2013) to build the virtualized batch-
queuing clusters, and ClusterJob (Monajemi & Donoho,
2015; Monajemi et al., 2017) to drive the experiments
(see Figure 2); we must however emphasize the gener-
ality of this model in the sense that the users can use
other software systems that offer similar functionalities.

On a more abstract level, this stack includes building
ephemeral clusters as an additional component of a com-
putational experiment through adopting a Infrastruc-
ture as Code (IaC) approach to cloud resource manage-
ment. Currently, the user makes a call to ElastiCluster
to build a cluster, but in the future we expect this step
to be handled automatically by ClusterJob.

This stack was first proposed and implemented
by Hatef Monajemi and Riccardo Murri during the
Stats285 course at Stanford in Fall 2017. Below, we will
introduce ElastiCluster and ClusterJob in more detail.
• ElastiCluster. ElastiCluster is an open-source soft-

ware that provides a command line tool and a
Python API to create, set up, and resize compute
clusters hosted on IaaS cloud computing platforms.
It uses Ansible (Red Hat, Inc., 2016) as an IaC
tool to get a compute cluster up and running in
a push-button way on multiple cloud platforms,
such as AWS, Google Cloud, Microsoft Azure,
and OpenStack. It offers computational clusters

with various base operating systems (e.g., De-
bian, Ubuntu, CentOS) and job schedulers (e.g.,
SLURM, SGE, Torque, HTCondor, and Mesos). It
also supports Spark/Hadoop clusters and several
distributed file systems such as CephFS, GlusterFS,
HDFS, and OrangeFS/PVFS. ElastiCluster has been
used for large-scale simulation projects such as
those occurring in ATLAS experiment at CERN
(Haug, Sciacca, & Collaboration, 2017)

• ClusterJob (CJ). ClusterJob is an open-source EMS
that makes doing massive reproducible compu-
tational experiments on remote compute clusters
a push-button affair. CJ is written in Perl and
currently supports batch submission of Python and
Matlab jobs to compute clusters via SLURM and
SGE batch-queuing systems. For embarrassingly
parallel tasks5, CJ offers automatic parallelization
of scripts that are written serially. In addition,
CJ automates reproducibility by generating and
saving random seeds for each experiment, list of
dependencies, and extra code to ensure the re-
sults can be reproduced at a later time. Given a
main script and its dependencies, CJ produces a
reproducible computational package with distinct
Package IDentifier (PID) (a SHA-1 code), auto-
matically sets up the execution environment, and
submits the jobs to a remote cluster. Having the
PID, one can track the progress of the runs, harvest
the data, and get other information about the
experiments at any time using various commands
provided by CJ’s command line interface. At this
point, CJ packages are hosted on users’ clusters
or transferred back to users’ local disks. In the
next release of ClusterJob, users will have the
option of storing their packages on CJHub, a cloud
storage that provides automatic archival of the
experiments run by CJ.

The ElastiCluster-ClusterJob Stack has been used
frequently by Stanford researchers6: Romano, Sesia,
and Cand‘es (2018) conducted eight years of GPU
computing to develop and test Deep Knockoffs that
improved upon the state-of-the-art variable selection
method; Papyan (2018, 2019) reported MCEs conducted
using this stack to track the evolution of deep net
Hessians; and Mei, Montanari, and Nguyen (2018)
used ClusterJob to run thousands of simulations that
numerically validated a new mathematical theory for
neural networks.

This stack has also been used for teaching data
science. Using this stack and cloud computing credits
from Google Cloud Education, students of Stanford’s
Stats285 were able to set up their own personal GPU
clusters in the cloud and collectively train nearly 2, 000
deep nets with various architectures and datasets in

5See Section V-C for a definition of embarrassingly parallel tasks.
6In cases where authors do not cite ElastiCluster or ClusterJob, the

data is acquired via email correspondence

6

one calendar day to replicate an important and well-
cited article (Zhang, Bengio, Hardt, Recht, & Vinyals,
2016) and discover new phenomena in deep learning 7.
This model has also been used extensively during the
2018 Stats285 Data Science Hackathon8 to attack chal-
lenging problems in political science, medical imaging,
and natural language processing. Some of our co-
authors regularly use this model of computing. Our
experience shows that it takes roughly 15-18 minutes
to set up a CPU cluster with less than 10 computa-
tional nodes9 and 20-23 minutes if GPU accelerators
are attached to the nodes (an extra five minutes is due
to time it takes to install CUDA).10

The exact details of this stack are explained thor-
oughly in the GitHub companion page of this arti-
cle (https://tinyurl.com/y2w3yyhp) (Monajemi
et al., 2018). The reader is encouraged to set up a
personal cluster following the guide therein. We will
briefly explain the general idea here.

An individual can spin up a personal HPC cluster
(say gce) by providing a simple configuration file to
ElastiCluster and typing the following command in a
terminal:

$ elasticluster start gce

Here elasticluster is simply a 0-install bash script
that is provided to the user. This script uses a dock-
erized version of ElastiCluster to carry out the user’s
command; it pulls ElastiCluster’s docker image from
DockerHub, and then runs elasticluster in a docker
container. If Docker is not installed on your machine,
the script asks for your permission to automatically
install it. ElastiCluster’s 0-install script thus brings
additional convenience to the user by eliminating the
need for the installation of ElastiCluster’s API and
various dependencies.

Once gce cluster is setup, you can run your exper-
iments on it using CJ. All that is needed from your
cluster to link it to CJ is the IP address of the frontend
(master) node, which can be obtained via the following
command:

$ elasticluster list-nodes gce

To use CJ, one has to install it on a local machine. CJ
is written entirely in Perl and features a very straight-

7The results and discoveries made in Stats285 collaborative study
on deep learning are expected to be compiled into a peer-review
article.

8See course website http://stats285.github.io
9ElastiCluster currently sets up nodes in batches of 10 at a time.

So, for a cluster with N nodes the setup time is roughly (1 + b(N −
1)/10c) × T where T is the setup time for one batch (T ≈ 20 min).

10The time it takes to set up a cluster in the cloud can vary slightly
due to various factors such as the proximity and network traffic of
the cloud provider’s data center, responsiveness of the cloud provider
API (e.g., starting a VM on Azure is much more complex than on
Google), the boot process of the chosen operating system (e.g., Debian
is faster to boot than Ubuntu), the number and speed of CPUs on
the local machine, etc.

forward installation guide that is provided in the com-
panion page of this article (Monajemi et al., 2018). Once
CJ is available on your machine, you can configure your
cluster via either of the following commands:

$ cj config gce --update
$ cj config-update gce

This command prompts the user to set up the
new gce cluster by providing the IP address and
other optional configuration options such as the de-
sired runtime libraries11. The information provided
by the user will be saved in CJ’s configuration file
˜/CJinstall/ssh_config. For clusters that already
exist in this configuration file, a user can update only
the corresponding IP address to avoid altering an
earlier specification of optional parameters each time
a new machine is created.

$ cj config-update gce host=35.185.238.124

After this step, running MCEs on gce is a push-
button affair. As a simple example, consider a Deep
Learning experiment (written in PyTorch or Tensor-
flow) that involves training 50 networks for a grid of
10 architectures and 5 datasets. The experimenter first
implements a main Python script DLexperiment.py
that loops over all 50 (architecture, dataset) combinations
and executes a certain task for each. She then includes
all additional dependencies including datasets in a
directory – say bin/.12The following CJ command then
automatically parallelizes for loops inside the main
Python script, creates 50 different separate jobs for all
the combinations, and reproducibly runs them on gce
while assigning 1 GPU to each job.

$ cj parrun DLexperiment.py gce -dep bin/
-alloc ’--gres:gpu:1’ -m ’reminder message’

Once the computations associated with certain <PID>
are finished, the experimenter can harvest the results of
all jobs and transfer them to a local machine through
various available harvesting commands. As an exam-
ple, below we reduce all the results.txt files of all
jobs into one file and transfer the package to the local
machine.

$ cj reduce results.txt <PID>
$ cj get <PID>

The results obtained may then suggest designing and
running new experiments, which can be easily handled
through CJ. Once all necessary data are collected and
the experimenter is satisfied with the current round of
experiments, the personal cluster is no longer needed
and so it can be destroyed:

11CJ uses the conda package manager https://conda.io/
docs/ to automatically set up a software environment according to
libraries determined in ssh config file.

12It is also possible to direct CJ to use datasets already on a cluster,
hence not moving data from local machine to remote cluster if data
will be used for more than one experiment.

7

https://tinyurl.com/y2w3yyhp
http://stats285.github.io
https://conda.io/docs/
https://conda.io/docs/

Fig. 3. Execution in CodaLab Worksheets proceeds by taking a set
of input bundles (immutable files/directories representing code or
data), running arbitrary code in a docker container, and producing
an output bundle, which can be used further downstream.

$ elasticluster stop gce

The information about the computations conducted
through CJ is logged and can be retrieved at a later
time. CJ provides a very simple command-line interface
(CLI) with many features for managing data science ex-
periments. The reader is referred to CJ’s documentation
available on www.clusterjob.org for a comprehen-
sive list of features. It should be emphasized that both
ElastiCluster and ClusterJob are open-source software
under active development and the reader is encouraged
to follow their future enhancements on GitHub.

B. CodaLab Worksheets
CodaLab Worksheets (Liang et al., 2014) offer an EMS

developed by a team at Stanford University led by
Percy Liang and supported by Microsoft. CodaLab’s
premise is that in order to accelerate computational
research, we need to make it more reproducible. Just
as version control systems like Git have enabled de-
velopers to scale up software engineering, CodaLab
hopes to do the same for computational experiments.
CodaLab allows users to upload code and data, and
run cloud experiments. CodaLab automatically keeps
track of the full provenance of computation, so that it
is easy to introspect, reproduce, and modify existing
experiments.

CodaLab is built around two concepts13: bundles and
worksheets. Bundles are immutable files/directories that
represent the code, data, and results of an experimental
pipeline. There are two ways to create bundles. First,
users can upload bundles, which are datasets in any
format or programs in any programming language.
Second, users can create run bundles by executing shell
commands that depend on the contents of previous
bundles. A run bundle is specified by a set of bundle
dependencies and an arbitrary shell command. This
shell command is executed in a docker container in

13For more information, visit https://github.com/codalab/
codalab-worksheets/wiki.

a directory with the dependencies. The contents of the
run bundle are the files/directories which are written to
the current directory by the shell command (Figure 3).
In the end, the global dependency graph over bundles
precisely captures the research process of the entire
community in an immutable way.

Worksheets organize and present an experimental
pipeline in a comprehensible way, and can be used
as a lab notebook, a tutorial, or an executable paper.
Worksheets contain references to a subset of bundles
and can be thought of as a view on the bundle
graph. Worksheets are written in a custom markdown
language, and in the spirit of literate programming,
allow one to interleave textual descriptions, images,
and bundles, which can be rendered as tables with
various statistics.

The CodaLab server takes execution requests and
assigns jobs to workers. The user can view the results
(stdout and any files) in real-time and also commu-
nicate with the running process via ports. CodaLab
for the foreseeable future will be free to researchers.
One unique property about CodaLab is that researchers
can pay for their own compute by connecting workers
running on Azure/GCP/AWS under their accounts to
CodaLab, allowing for more decentralization and larger
potential for scaling up organically. They can also
install their own CodaLab instance, in which case they
supply their own compute and storage.

A CodaLab user can either use the public instance
(worksheets.codalab.org) or set up a custom in-
stance (e.g., for a research lab). CodaLab can be used
either from a web interface or from a command-line
interface (CLI), which provides experts with more pro-
grammatic control. The CLI is easily installed from
PyPI:

$ pip install codalab

This provides the command cl, which is the main
entry point to CodaLab functionality.

To upload a bundle (either source code or data):

$ cl upload cnn.py
$ cl upload mnist

Recall that bundles can either be files or directories.
To execute an experiment, one must specify the input
bundles (in this case, two of them) and a command to
be run, producing a run bundle:

$ cl run :cnn.py data:mnist \
’python cnn.py data/train.dat data/test.dat’

For each input bundle, one specifies a name (e.g.,
data). The execution of the command takes place in
a Docker image where the input bundles are presented
as files/directories with the given names in a temporary
directory. The command outputs additional files in the
current directory, which are saved as the contents of
the run bundle once the bundle finishes executing.

8

www.clusterjob.org
https://github.com/codalab/codalab-worksheets/wiki
https://github.com/codalab/codalab-worksheets/wiki
worksheets.codalab.org

The CodaLab execution model is based on dataflow,
in which bundles represent information processed in
a pipeline. In particular, bundles are immutable, so
each command produces a new run bundle rather than
modifying an existing bundle. Note that the Docker
environment is only used temporarily to run the com-
mand; only the outputs of the run are saved. This im-
mutability stands in contrast to other execution models
where one might have an entire virtual machine at
one’s disposal or, in the case of Jupyter notebook, the
entire Python kernel. The dataflow model of CodaLab
is important for introspection and decentralized collab-
oration: one can see exactly the chain of commands that
were run, and another researcher can build off of an
existing result by simply running more commmands on
it without a danger of overriding anything. In addition,
CodaLab stores all bundles in a bundle store, which is
currently based on a file system. Some deployments
use local disks and others use a network file system.
Access to the bundle store is prohibited, and all access
goes through CodaLab APIs, which uses its own group-
based permissions model.

One of the most powerful features in CodaLab is
called mimic, which is enabled by having the dataflow
model of computation. In brief, mimic allows you
to rerun a computation with modifications. The basic
usage is as follows:

$ cl mimic A B

This command examines all the bundles downstream
of A, and re-executes them all, but now with B instead.
For example, A could be the old dataset and B could be
the new dataset, or A could be the old algorithm and
B could be the new algorithm. In principle, whenever
someone creates a new method, she should be able to
painlessly execute it on all existing datasets as long as
the new method conforms to a standard interface.

One of the two main uses of CodaLab Worksheets is
in running the Stanford Question Answering Dataset
(SQuAD) competition (stanford-qa.com). In this
competition, researchers have to develop a system that
can answer factual questions on Wikipedia articles.
Over the last two years, over 70 teams have submitted
solutions to the highly competitive leaderboard. Each
team runs their models on the development set, which
is public; this allows teams to independently configure
their own environment and manage their own depen-
dencies. Once the team is ready, they submit their
system, which is actually the bundle corresponding
to the result on the development set. The SQuAD
organizers use cl mimic to re-run the experiment on
the hidden test set instead. Here, we see that CodaLab
provides both flexibility and standardization. As a case
study, in the past two years, one of the homeworks
in the Stanford Natural Language Processing class has
been to develop a model for SQuAD. In 2017, 162
teams from the class participated using the public
instance of CodaLab, which was able to scale up and

handle the load. There are also other leaderboards that
are currently supported by CodaLab Worksheets such
as QUAC (quac.ai), COQA (stanfordnlp.github
.io/coqa), and MURA (stanfordmlgroup.github
.io/competitions/mura).

The other main use case of CodaLab is to help
people run and manage many experiments at once.
This happens at several levels. First, CodaLab is backed
by a cluster, so that the user needs to focus only on
what experiments to run rather than where to run
them (although the user can specify resource require-
ments). Second, the dataflow model means that for
every experiment, which version of the code and data
used to produce that experiment is fully documented;
as a result, one will never find oneself in a situation
with a positive result that is not reproducible anymore.
Third, the worksheets in CodaLab offer a flexible way
of monitoring and visualizing runs. One can define a
table schema, which specifies the custom fields to dis-
play (e.g., accuracy metrics, resource utilization, dataset
size); a run is a row in this table. This allows one to
easily compare the metrics on many variants of the
same algorithm, leading to faster prototyping.

In summary, CodaLab provides a collaborative plat-
form that allows researchers to contribute to one global
ecosystem by uploading code, data, and other assets,
running experiments to generate other assets (bundles),
etc. CodaLab keeps the full provenance and provides
full transparency (though one can opt to keep some
bundles private if necessary). CodaLab starts as a
mechanism for enabling researchers to be more efficient
at running experiments, and also serves as a publishing
platform for published research or competitions. Hav-
ing a common substrate that supports these use cases
opens up the opportunity to bring development and
publication closer together.

C. PyWren’s serverless execution model

Many scientific computing tasks exhibit a significant
degree of innate parallelism, which if properly ex-
ploited can dramatically accelerate computational sci-
ence. These range from classic Monte Carlo methods, to
the optimization of hyperparameters, to featurization
and preprocessing of large input volumes of data. In
many of these cases, large amounts of code are written
a priori for one instance of such tasks without regard to
potential parallel or distributed execution. Indeed, it is
only at the end (i.e., the outer per-instance processing
loop) that parallelism is even apparent. The code writ-
ten in this way is called embarrassingly parallel because
it is trivial to execute in parallel; each operation does
not depend on the result of any other. If the computing
resources available were truly infinite, the total runtime
for these operations would be bounded by the duration
of the slowest single scalar piece. Running a single task
and running 10,000 tasks would take the same amount
of time.

9

stanford-qa.com
quac.ai
stanfordnlp.github.io/coqa
stanfordnlp.github.io/coqa
stanfordmlgroup.github.io/competitions/mura
stanfordmlgroup.github.io/competitions/mura

TABLE III
Serverless computing resource limits per invocation

AWS Lambda1 Google Cloud Functions Azure Functions
Deployment (MB) 50 100 N/A
Memory (GB) 3.0 2.0 1.5
Ephemeral Disk (GB) 0.5 2.0 −Mem2 5000
Max. run time (sec) 300 540 600

1 https://docs.aws.amazon.com/lambda/latest/dg/limits.html
2 Disk space consumes from the memory limit.

PyWren (Jonas et al., 2017) is a system developed
to enable this kind of massively-parallel, transparent
execution. PyWren is built in the Python program-
ming language, and exploits the language’s inherent
dynamism to transparently identify dependencies and
related libraries and marshal them to remote servers for
execution. It uses recent serverless platforms offered by
cloud providers to quickly command controls of tens of
thousands of CPU cores, run the resulting parallel task
transparently, and then shut down those machines.

Serverless computing [a.k.a. Function as a Service
(FaaS)] is a fairly new cloud execution model in which
the cloud provider removes much of the complexity
of the cloud usage by abstracting away server provi-
sioning (Miller, 2015). In this model, a function and
its dependencies are sent to a remote server that is
managed by the cloud provider and then executed.
AWS Lambda, Google Cloud Functions, and Azure
Functions are among popular serverless computing
offerings.

Current serverless computing services are suitable
for short-lived jobs with small storage and memory
requirements because of the limits set by the cloud
providers (See Table III). This is because serverless
computing was originally designed to execute event-
driven, stateless functions (code) in response to trig-
gers such as actions by users, or changes in data
or system state. Nevertheless, serverless computing
provides an efficient model for applications such as
processing and transforming large amount of data,
encoding videos, and applications such as simulations
and Monte Carlo method with large innate amounts of
parallelism (Ishakian, Muthusamy, & Slominski, 2018;
Jonas et al., 2017).

PyWren can easily be installed via PyPI and follow-
ing a number of setup prompts which involve pro-
viding credentials for authentication to the underlying
cloud computing provider:

$ pip install pywren
$ pywren-setup

As an example, consider the following MatVec func-
tion that performs the relatively trivial task of generat-
ing a random matrix and vector from a N(0, b) distri-
bution and computing their matrix-vector product, and
returning the result.

def MatVec(b):

x = np.random.normal(0, b, 1024)
A = np.random.normal(0, b, (1024, 1024))
return np.dot(A, x)

Using PyWren’s map command, one can painlessly
invoke 1,000 distinct instances of this function to be
executed transparently in the cloud:

pwex = pywren.default_executor()
res = pwex.map(MatVec,

np.linspace(0.1, 100, 1000))

Behind the scenes, PyWren exploits Python’s dy-
namic nature to inspect all dependencies required by
the function, and marshals as many of those as possible
over to the remote executor. The resulting function is
run on the remote machine, and the return value is
serialized and delivered to the client.

The dynamic, language-embedded nature of PyWren
makes it ideal for exploratory data analysis from within
a Jupyter notebook or similar interactive environment.
PyWren is currently limited to exploiting map-style
parallelism, although active research is underway to
broaden the capabilities of the serverless execution
model. The function serialization technology is not
perfect; currently it struggles with Python modules that
have embedded C code, requiring them to be packaged
independently as part of a runtime. This too is an active
area of research. Finally, the limitations provided by
the cloud providers’ serverless execution environments
(including runtime and memory) constrain the exact
functions that can be run, although we anticipate these
constraints lessening with time.

D. Third-Party Unified Analytics Interfaces

Several companies provide paid services for painless
computing in some third-party cloud; researchers may
choose to use their services for conducting their ambi-
tious experiments. A few examples of such companies
are Databricks (Databricks, 2013), Domino Data Lab
(Domino Data Lab, 2013), FloydHub (FloydHub, 2016)
and Civis Analytics (Civis Analytics, 2013). Each of
these companies has a slightly different focus (e.g.,
Databricks focuses on Spark applications whereas Floy-
dHub focuses on Deep Learning) and may use a dif-
ferent computing model for managing computations in
the cloud. Nevertheless, all of them build wrappers
around cloud services so that individual users can

10

https://docs.aws.amazon.com/lambda/latest/dg/limits.html

conduct their MCEs without having to directly interact
with the cloud. They provide graphical user interfaces
through which users can set up their desired compu-
tational environment, upload their data and codes, run
their experiments and track their progress. They also
offer a community edition of their services that can be
used for initial testing before buying their computing
and storage services.

VI. Concluding Remarks

We discussed several computing stacks that can
dramatically scale up computational experiments,
painlessly. Such stacks explicitly or implicitly enable
experiment management systems (EMS), a fundamen-
tal concept in modern data science research. They
offer efficiency and clarity of mind to researchers by
organizing the specification and execution of large col-
lections of experiments, and by removing the apparent
barriers to using the cloud. In addition, they capture
and document the numerous iterative attempts that are
undertaken in typical projects.

We look forward to a future where every researcher
can dream up ambitious computational experiments,
open up his/her laptop, and command a computational
agent to fire up millions of jobs to study a certain
problem of interest. A future where instead of manual
human intervention, computational agents seamlessly
run jobs in the cloud, manage their progress, harvest
the results of the experiments, run specified analyses
on those results, and package them in a unified format
that is transparent, reproducible, and easily sharable.
Such automation of research activities will, we believe,
empower data scientists to deliver many more break-
throughs and will accelerate scientific progress.

VII. List of Abbreviations

AWS Amazon Web Services
CJ ClusterJob
EMS Experiment Management System
GCP Google Cloud Platform
HPC High Performance Computing
IaaS Infrastructure as a Service
IaC Infrastructure as Code
MCE Massive Computational Experiment
NMT Neural Machine Translation
PaaS Platform as a Service
PCS Painless Computing Stack
SaaS Software as a Service
SLURM Simple Linux Utility for Resource
Management

VIII. Author statement and acknowledgements

This article is based on a series of lectures presented
in Fall 2017 at Stanford in Statistics 285. All authors
contributed equally.

This work was supported by National Science Foun-
dation grants DMS-0906812 (American Reinvestment
and Recovery Act), DMS-1418362 (‘Big-Data’ Asymp-
totics: Theory and Large-Scale Experiments) and DMS-
1407813 (Estimation and Testing in Low Rank Multi-
variate Models). We thank Google Cloud Education for
providing Stanford’s Stats285 class with cloud comput-
ing credits. We would like to thank Eun Seo Jo for
helpful discussions.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., . . . Isard, M. (2016). Tensorflow: a system
for large-scale machine learning. In Osdi (Vol. 16,
pp. 265–283).

Berman, F., Rutenbar, R., Hailpern, B., Christensen,
H., Davidson, S., Estrin, D., . . . Szalay, A. S.
(2018, March). Realizing the potential of data
science. Commun. ACM, 61(4), 67–72. Re-
trieved from http://doi.acm.org/10.1145/
3188721 doi: 10.1145/3188721

Brunton, S. L., Proctor, J. L., & Kutz, J. N.
(2016). Discovering governing equations from
data by sparse identification of nonlinear dy-
namical systems. Proceedings of the National
Academy of Sciences, 113(15), 3932–3937. Retrieved
from http://www.pnas.org/content/113/
15/3932 doi: 10.1073/pnas.1517384113

Civis Analytics. (2013). Retrieved from https://new
.civisanalytics.com

Conda. (2012). Retrieved from https://conda.io/
docs/

CSSI. (2019). Cyberinfrastructure for sustained
scientific innovation (CSSI): Elements and
framework implementations. Retrieved from
https://www.nsf.gov/pubs/2019/
nsf19548/nsf19548.htm (NSF 19-548)

Databricks. (2013). Retrieved from https://
databricks.com

Domino Data Lab. (2013). Retrieved from https://
www.dominodatalab.com

Donoho, D. L., Maleki, A., Rahman, I. U., Shahram,
M., & Stodden, V. (2009). Reproducible research
in computational harmonic analysis. Computing
in Science & Engineering, 11(1), 8–18.

EACC. (2018). Enabling access to Cloud computing
resources for CISE research and education (Cloud
Access). Retrieved from https://www.nsf
.gov/pubs/2019/nsf19510/nsf19510.htm
(NSF 19-510)

FloydHub. (2016). Retrieved from https://www
.floydhub.com

G. M. Kurtzer, M. B., V. Sochat. (2017). Singularity: Sci-
entific containers for mobility of compute. PLoS
ONE, 12(5).

Haug, S., Sciacca, F. G., & Collaboration, A.
(2017, oct). ATLAS computing on Swiss

11

http://doi.acm.org/10.1145/3188721
http://doi.acm.org/10.1145/3188721
http://www.pnas.org/content/113/15/3932
http://www.pnas.org/content/113/15/3932
https://new.civisanalytics.com
https://new.civisanalytics.com
https://conda.io/docs/
https://conda.io/docs/
https://www.nsf.gov/pubs/2019/nsf19548/nsf19548.htm
https://www.nsf.gov/pubs/2019/nsf19548/nsf19548.htm
https://databricks.com
https://databricks.com
https://www.dominodatalab.com
https://www.dominodatalab.com
https://www.nsf.gov/pubs/2019/nsf19510/nsf19510.htm
https://www.nsf.gov/pubs/2019/nsf19510/nsf19510.htm
https://www.floydhub.com
https://www.floydhub.com

Cloud SWITCHengines. Journal of Physics:
Conference Series, 898, 052017. Retrieved
from https://doi.org/10.1088%2F1742
-6596%2F898%2F5%2F052017 doi:
10.1088/1742-6596/898/5/052017

Herrmann, M. D. (2017). Computational methods and
tools for reproducible and scalable bioimage analysis
(Unpublished doctoral dissertation). Universität
Zürich.

Hey, T., Tansley, S., & Tolle, K. (2009). The fourth
paradigm: Data-intensive scientific discovery.
Microsoft Research. Retrieved from https://
www.microsoft.com/en-us/research/
publication/fourth-paradigm-data
-intensive-scientific-discovery/

Huang, P., Feldmeier, K., Parmeggiani, F., Fernandez-
Velasco, D. A., Höcker, B., & Baker, D. (2015). De
novo design of a four-fold symmetric TIM-barrel
protein with atomic-level accuracy. , 12, 29–34.

Ishakian, V., Muthusamy, V., & Slominski, A. (2018).
Serving deep learning models in a serverless plat-
form. arXiv:1710.08460.

Izrailevsky, Y. (2016). Completing the Netflix
Cloud migration. Retrieved from https://
techcrunch.com/2015/11/24/aws-lamda
-makes-serverless-applications-a
-reality/

Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., & Recht,
B. (2017). Occupy the Cloud: Distributed com-
puting for the 99%. arXiv:1702.04024.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems.

Lewis-Kraus, G. (2016). The great A.I. awakening.
Retrieved from https://www.nytimes.com/
2016/12/14/magazine/the-great-ai
-awakening.html

Liang, P., et al. (2014). Codalab worksheets: Accelerating
reproducible computational research. Retrieved from
http://worksheets.codalab.org

Maffioletti, S., & Murri, R. (2012). GC3PIE: a python
framework for high-throughput computing. In
Egi community forum 2012/emi second technical con-
ference (Vol. 162, p. 143).

Mei, S., Montanari, A., & Nguyen, P.-M. (2018).
A mean field view of the landscape of two-
layer neural networks. Proceedings of the
National Academy of Sciences, 115(33), E7665–
E7671. Retrieved from https://www.pnas
.org/content/115/33/E7665 doi: 10.1073/
pnas.1806579115

Mell, P., & Grance, T. (2011). The NIST
Definition of Cloud Computing. Retrieved from
https://csrc.nist.gov/publications/
detail/sp/800-145/final doi:
10.6028/NIST.SP.800-145

Merkel, D. (2014, March). Docker: Lightweight

linux containers for consistent development
and deployment. Linux J., 2014(239). Re-
trieved from http://dl.acm.org/citation
.cfm?id=2600239.2600241

Microsoft Translator. (2016). Microsoft translator
launching neural network based translations
for all its speech languages. Retrieved from
https://blogs.msdn.microsoft.com/
translation/2016/11/15/microsoft
-translator-launching-neural-network
-based-translations-for-all-its
-speech-languages/

Miller, R. (2015). AWS Lambda makes serverless
applications a reality. Retrieved from
https://techcrunch.com/2015/11/
24/aws-lamda-makes-serverless
-applications-a-reality/

Monajemi, H., & Donoho, D. L. (2015). Clusterjob: An
automated system for painless and reproducible
massive computational experiments. Retrieved
from https://github.com/monajemi/
clusterjob

Monajemi, H., & Donoho, D. L. (2018). Sparsity/under-
sampling tradeoffs in anisotropic undersampling,
with applications in mr imaging/spectroscopy.
Information and Inference: A Journal of the IMA,
iay013. Retrieved from http://dx.doi.org/
10.1093/imaiai/iay013 doi: 10.1093/imaiai/
iay013

Monajemi, H., Donoho, D. L., & Stodden, V. (2017,
February). Making massive computational exper-
iments painless. Big Data (Big Data), 2016 IEEE
International Conference on.

Monajemi, H., Jafarpour, S., Gavish, M., Collaboration,
S. C. ., & Donoho, D. L. (2013). Deterministic
matrices matching the compressed sensing
phase transitions of Gaussian random matrices.
PNAS, 110(4), 1181–1186. Retrieved from
http://www.pnas.org/content/110/4/
1181.abstract doi: 10.1073/pnas.1219540110

Monajemi, H., et al. (2018). Companion page
for the paper Ambitious Data Science Can
be Painless. Retrieved from https://
monajemi.github.io/datascience/
pages/painless-computing-models

MPI Forum. (2015). MPI: A Message-Passing
Interface Standard, Version 3.1. Retrieved
from https://www.mpi-forum.org/docs/
mpi-3.1/mpi31-report.pdf

Murri, R., et al. (2013). ElastiCluster. Re-
trieved from https://github.com/gc3-uzh
-ch/elasticluster

NIH. (2018, Sept). NIH strategic plan for
data science. NIH, 1–31. Retrieved from
https://datascience.nih.gov/sites/
default/files/NIH Strategic Plan for
Data Science Final 508.pdf

NRC. (2013). Frontiers in massive data analysis. The

12

https://doi.org/10.1088%2F1742-6596%2F898%2F5%2F052017
https://doi.org/10.1088%2F1742-6596%2F898%2F5%2F052017
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
http://worksheets.codalab.org
https://www.pnas.org/content/115/33/E7665
https://www.pnas.org/content/115/33/E7665
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-neural-network-based-translations-for-all-its-speech-languages/
https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-neural-network-based-translations-for-all-its-speech-languages/
https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-neural-network-based-translations-for-all-its-speech-languages/
https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-neural-network-based-translations-for-all-its-speech-languages/
https://blogs.msdn.microsoft.com/translation/2016/11/15/microsoft-translator-launching-neural-network-based-translations-for-all-its-speech-languages/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/
https://github.com/monajemi/clusterjob
https://github.com/monajemi/clusterjob
http://dx.doi.org/10.1093/imaiai/iay013
http://dx.doi.org/10.1093/imaiai/iay013
http://www.pnas.org/content/110/4/1181.abstract
http://www.pnas.org/content/110/4/1181.abstract
https://monajemi.github.io/datascience/pages/painless-computing-models
https://monajemi.github.io/datascience/pages/painless-computing-models
https://monajemi.github.io/datascience/pages/painless-computing-models
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://github.com/gc3-uzh-ch/elasticluster
https://github.com/gc3-uzh-ch/elasticluster
https://datascience.nih.gov/sites/default/files/NIH_Strategic_Plan_for_Data_Science_Final_508.pdf
https://datascience.nih.gov/sites/default/files/NIH_Strategic_Plan_for_Data_Science_Final_508.pdf
https://datascience.nih.gov/sites/default/files/NIH_Strategic_Plan_for_Data_Science_Final_508.pdf

National Academies Press. Retrieved from
https://www.nap.edu/catalog/18374/
frontiers-in-massive-data-analysis
doi: 10.17226/18374

OpenAI. (2018). AI and Compute. Retrieved
from https://blog.openai.com/
ai-and-compute/

Papyan, V. (2018). The full spectrum of deep net
Hessians at scale: Dynamics with sample size.
arXiv:1811.07062.

Papyan, V. (2019). Measurements of three-level hierar-
chical structure in the outliers in the spectrum of
deepnet Hessians. arXiv:1901.08244.

Red Hat, Inc. (2016). Ansible is simple IT automation.
Retrieved from https://www.ansible.com/

Rexford, J., Balazinska, M., Culler, D., & Wing, J. (2018).
Enabling computer and information science and engi-
neering research and education in the Cloud (Tech.
Rep.). USA.

Romano, Y., Sesia, M., & Cand‘es, E. J. (2018). Deep
knockoffs. arXiv:1811.06687.

Shirangi, M. G. (2019). Closed-loop field develop-
ment with multipoint geostatistics and statistical
performance assessment. Journal of Computational
Physics, 30, 249–264.

Simonyan, K., & Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recog-
nition. arXiv:1409.1556.

Stodden, V. (2009). The legal framework for repro-
ducible scientific research: Licensing and copy-
right. Computing in Science Engineering, 11(1), 35–
40. doi: 10.1109/MCSE.2009.19

Stodden, V., McNutt, M., Bailey, D. H., Deelman, E.,
Gil, Y., Hanson, B., . . . Taufer, M. (2016). En-
hancing reproducibility for computational meth-
ods. Science, 354(6317), 1240–1241. Re-
trieved from http://science.sciencemag
.org/content/354/6317/1240 doi: 10.1126/
science.aah6168

Stodden, V., Seiler, J., & Ma, Z. (2018). An empirical
analysis of journal policy effectiveness for compu-
tational reproducibility. Proceedings of the National
Academy of Sciences, 115(11), 2584–2589. Retrieved
from http://www.pnas.org/content/115/
11/2584 doi: 10.1073/pnas.1708290115

STRIDES. (2018). The science and technology re-
search infrastructure for discovery, experimenta-
tion, and sustainability (STRIDES) initiative. Re-
trieved from https://commonfund.nih.gov/
strides (NIH)

Tukey, J. W. (1962, 03). The future of data analysis.
Ann. Math. Statist., 33(1), 1–67. Retrieved
from https://doi.org/10.1214/aoms/
1177704711 doi: 10.1214/aoms/1177704711

Walker, D. W., & Dongarra, J. J. (1996). MPI: A standard
message passing interface. Supercomputer, 12, 56–
68.

Waltz, D., & Buchanan, B. G. (2009). Au-

tomating science. Science, 324(5923), 43–44.
Retrieved from http://science.sciencemag
.org/content/324/5923/43 doi: 10.1126/
science.1172781

Yarkoni, T., & Westfall, J. (2017, Nov). Choosing pre-
diction over explanation in psychology: Lessons
from machine learning. Perspect Psychol Sci, 12,
1100–1122.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker,
S., & Stoica, I. (2010). Spark: Cluster computing
with working sets. HotCloud’10 Proc. 2nd USENIX
Conf. on Hot Topics in Cloud Computing.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals,
O. (2016). Understanding deep learning requires
rethinking generalization. arXiv:1611.03530.

13

https://www.nap.edu/catalog/18374/frontiers-in-massive-data-analysis
https://www.nap.edu/catalog/18374/frontiers-in-massive-data-analysis
https://blog.openai.com/ai-and-compute/
https://blog.openai.com/ai-and-compute/
https://www.ansible.com/
http://science.sciencemag.org/content/354/6317/1240
http://science.sciencemag.org/content/354/6317/1240
http://www.pnas.org/content/115/11/2584
http://www.pnas.org/content/115/11/2584
https://commonfund.nih.gov/strides
https://commonfund.nih.gov/strides
https://doi.org/10.1214/aoms/1177704711
https://doi.org/10.1214/aoms/1177704711
http://science.sciencemag.org/content/324/5923/43
http://science.sciencemag.org/content/324/5923/43

	Introduction
	Cloud to the rescue
	Automation in Data Science
	A Taxonomy of Services for Scientific Computing in the Cloud
	Painless Computing Stacks
	ElastiCluster-ClusterJob Stack
	CodaLab Worksheets
	PyWren's serverless execution model
	Third-Party Unified Analytics Interfaces

	Concluding Remarks
	List of Abbreviations
	Author statement and acknowledgements
	References

