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PREFACE 
 

This document contains the findings and recommendations of the NSF – Advisory Committee 
for Cyberinfrastructure Task Force on Grand Challenges addressed by advances in Cyber Science 
and Engineering. The term Cyber Science and Engineering (CS&E) is introduced to describe the 
intellectual discipline that brings together core areas of science and engineering, computer science, 
and computational and applied mathematics in a concerted effort to use the cyberinfrastructure (CI) 
for scientific discovery and engineering innovations; CS&E is computational and data-based 
science and engineering enabled by CI. The report examines a host of broad issues faced in 
addressing the Grand Challenges of science and technology and explores how those can be met by 
advances in CI. Included in the report are recommendations for new programs and initiatives that 
will expand the portfolio of the Office of Cyberinfrastructure (OCI) and that will be critical to 
advances in all areas of science and engineering that rely on the CI. 

The Task Force, one of six created by the ACCI during the summer of 2009, met many times 
since its inception, and held two workshops, one in August 2009, and another in April 2010. Over 
100 scientists from the CS&E community participated in these meetings and contributed to the 
ideas that led to eight working drafts of this document before the present version was completed. A 
partial list of the Workshop attendees is given in Appendix A. 

The Task Force consisted of six working groups, dedicated to six key components of the study: 
Computational Methods and Algorithms, led by Donald Estep and Omar Ghattas; High 
Performance Computing, led by Abani Patra; Software, led by Thom Dunning and Katherine 
Yelick; Data and Visualization, led by Cathy Wu and Christopher Johnson; Education, Training, 
and Workforce Development, led by Sharon Glotzer and Linda Petzold; and Grand Challenge 
Communities, led by John King and Victoria Stodden. Tinsley Oden chaired the Task Force, Omar 
Ghattas and John King acted as co-chairs, and Barry I. Schneider of NSF was the NSF liaison 
between OCI and the Task Force. Jon Bass served as the Task Force Administrative Coordinator.  

Many others contributed to the writing of various sections, and the work of the following 
should be mentioned:  Guy Almes (TAMU), Luc Anselin (Arizona State) George Biros (Georgia 
Tech), Robert Bonneau (AFOSR), James Brasseur (Penn State), Richard Brower (Boston U.), Peter 
Cummings (Vanderbilt/ORNL), Frederica Darema (AFOSR), Thomas Dietterich (Oregon State), 
Ron Elber (UT-Austin), Tom Evans (Indiana), Geoffrey Fox (Indiana), Gary King (Harvard), Alan 
Laub (UCLA), David Lazer (Northeastern), J. Scott Long (Indiana), Liz Lyon (U Bath), Dimitri 
Mavriplis (U. Wyoming), Thomas Maier (ORNL), Stephen McCormick (CU Boulder), Richard 
Moore (SDSC), Bernice Pescosolido (Indiana), Alex Pothen (Purdue), Mark Shephard (RPI), 
Renata Wentzcovitch (U. Minnesota), and John Ziebarth (Krell Inst.). 

Although this report was prepared by a task force commissioned by the National Science 
Foundation, all opinions, findings, and recommendations expressed within it are those of the task 
force and do not necessarily reflect the views of the National Science Foundation. 

Preface 
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EXECUTIVE SUMMARY  

 
This document describes the major findings and recommendations of the NSF Task Force on 

Grand Challenges. It is one of six Task Forces created by the Advisory Committee for 
Cyberinfrastructure (ACCI) at NSF charged with the study of possible new programs and an 
expanded scope of CS&E within the foundation. The specific charges of this Task Force were: 

1) Develop a thorough understanding of the requirements of science and engineering 
applications on the cyberinfrastructure that must be developed to make significant progress 
toward resolving Grand Challenge (GC) Problems. 

2) Identify methods for enabling different communities to work together to solve complex 
problems. This will involve the study of virtual organizations and tools to support them. 

3) Interact with other task forces to come forth with a set of well conceived recommendations 
on ideas for new programs that might be developed within OCI that will more tightly 
couple advanced problem solving in science and engineering with continuing investments. 

4) Explore the role of Computational Science and Engineering enabled by Cyberinfrastructure 
in scientific discovery and engineering innovation and its place in the organizational 
structure and mission of NSF. 

We provide definitions of a few key terms to make more precise the targets of this study and 
how we approach these goals. 

1)  Cyberinfrastructure (CI):  the broad collection of computing systems, software, data acquisition 
and storage systems, and visualization environments, all generally linked by high-speed networks, 
often supported by expert professionals. 

2)  Cyber Science and Engineering (CS&E):  computational science and engineering enabled by the 
cyberinfrastructure. Science is the enterprise dedicated to the acquisition of knowledge, and 
engineering is the innovative application of science for human needs.  The classical pillars of 
science – the methods for acquiring knowledge – are theory (hypotheses put forth to explain 
physical realities) and experiments (knowledge gained through observation using human senses or 
instruments).  In this document, computational science and engineering refers to science and 
engineering achieved through the use of computational methods and systems (generally, hardware, 
software, networks, etc.).  Thus, computational science enables extensions of theory through 
computer modeling and simulation (but not exclusively), and enables extensions of experimental 
science through data-intensive computing (but not exclusively).  CS&E is thus the intellectual and 
technological discipline lying at the intersection of applied mathematics, computer science, and all 
core science and engineering areas including data-based observational science and engineering and 
statistics, dedicated to the development and use of computational methods and systems in scientific 
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discovery and engineering innovation.  

3)  Grand Challenges (GC’s):  the “Grand Challenges” were U.S. policy terms set in the 1980’s as 
goals for funding high-performance computing and communications research in response to foreign 
competition. They were described as “fundamental problems of science and engineering, with 
broad applications, whose solution would be enabled by high-performance computing resources…” 
(cf. http://www.nae.edu). Today, the Grand Challenges are interpreted in a much broader sense with 
the realization that they cannot be solved by advances in HPC alone: they also require extraordinary 
breakthroughs in computational models, algorithms, data and visualization technologies, software, 
and collaborative organizations uniting diverse disciplines. 

Among the many Grand Challenges that can be listed are: 
 

• Advanced New Materials* 
• Prediction of Climate Change* 
• Quantum Chromodynamics and 

Condensed Matter Theory 
• Semiconductor Design and 

Manufacturing 
• Assembling the Tree of Life* 
• Drug Design and Development 
• Energy through Fusion 
• Water Sustainability 

 

• Understanding Biological 
Systems* 

• New Combustion Systems 
• Astronomy and Cosmology* 
• Hazard Analysis and 

Management* 
• Human Sciences and Policy* 
• Virtual Product Design* 
• Cancer Detection and Therapy 
• CO2 Sequestration* 

As representative examples, those marked with an asterisk are discussed in more detail in the body 
of this report.  Common themes of all Grand Challenges include: 

• All Grand Challenges face barriers due to challenges in software, in data management and 
visualization, and in coordinating the work of diverse communities that must work together to 
develop new models and algorithms and to evaluate outputs as a basis for critical decisions.  

• Transformative discovery and innovation needed to address the Grand Challenges will often 
require capabilities approaching or exceeding exascale computing, and this will require 
dramatic changes in processor architecture and in power management.  

• More faithful computational models and more stable and robust algorithms needed for large-
scale Grand Challenge problems will have to adapt to emerging manycore and hybrid 
architectures, which appear to be a very promising path to energy-efficient increased 
computational power in the near future. Of critical importance are methods that are informed by 
observational data in a way that can cope with uncertainty in data and quantify uncertainties in 
predictions. New methods need to be developed to facilitate multiscale modeling, scalable 
solvers for multiphysics and stochastic problems, and large-scale data-intensive simulations.  

• Of special significance is the need for acquiring relevant data for calibration and validation of 
large-scale computational models and the characterization and quantification of uncertainties. 
This will require the development of statistical representations of data on parameters and 
observations, statistical inverse methods and software that implement them, and methods to 
resolve the large stochastic systems that result from model and data uncertainties. The transition 
of conventional deterministic methods and models of complex physical events to those 
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accounting for uncertainties and stochasticity will increase by several orders of magnitude the 
size, complexity, and computational work needed for predictive simulations. Another challenge 
presented by data-intensive simulation is ensuring the ability of others to verify and reproduce 
the scientific results. This involves issues spanning software design, code building, and code 
and data dissemination. 

• The combination of the development of computational models based on scientific and 
engineering principles, on principles and methods of computer science and computing 
technology, and on the use of core computational and applied mathematics that come into play 
to address effectively all Grand Challenge problems, represents the discipline referred to here as 
Cyber Science and Engineering.  While NSF has supported many cross-directorate initiatives in 
basic CS&E over the years, there is no home for it within the NSF organizational structure. The 
result has generally been scattered, underfunded programs with low proposal success rates, and 
no sustainability for efforts requiring long-term investments in software and algorithm 
development and infrastructure. Effectively attacking pressing Grand Challenge problems under 
these conditions is extremely difficult.  

4)  Grand Challenge Communities and Virtual Organizations: these are organizational structures 
enabled by the effective use of modern CI to facilitate collaboration among geographically 
distributed and intellectually diverse multidisciplinary groups, necessary for addressing large-scale 
and critical Grand Challenges affecting many areas of society and areas of science and engineering. 
Grand Challenge Communities often include participants from intellectual disciplines that have 
different and conflicting conventions of collaboration, are not used to working with each other, and 
reside in distinct geographic locations. The organization of effective GC Communities and VO’s is 
itself a formidable challenge requiring independent study in its own right. An introduction to the 
concepts and issues is given in Chapter 8 of this report, and a more complete study is to be the 
subject of a later report to the Advisory Committee on Cyberinfrastructure. 

Findings and Recommendations 
Overarching Recommendation 

 Throughout this study, the fundamental role of CS&E in scientific advancement and in 
addressing the Grand Challenges is repeatedly noted. This is a subject that has emerged since the 
advent of scientific computation and has grown to be of historic importance, affecting virtually 
every area of science and technology and revolutionizing the way science and engineering are done. 
It is now widely recognized as a third pillar of science and has become a subject indispensible to the 
nation’s welfare, competitiveness, and standing in the international scientific community. Its 
importance has been noted in numerous studies sponsored by federal agencies including, in 
particular, the National Science Foundation. There is a wide consensus that it is truly a discipline, in 
the same spirit as applied mathematics or computer engineering or biochemistry, but its 
extraordinary value stems from its unique reliance on interdisciplinary collaborations, drawing 
adaptively from a core body of knowledge in mathematics, computer science, engineering and 
technology, and all scientific disciplines to address specific research challenges that invariably cross 
traditional boundaries.  

CS&E differs from core computer science and applied math research in that it is more closely 
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intertwined with applications:  it seeks to exploit the structure of particular scientific and 
engineering problems to design effective methods to overcome the challenges inherent in driving 
science and engineering problems. CS&E research seeks to advance mathematical methods to a 
greater extent than is done in core computer science research; also the methods it employs are more 
hardware-aware and software-oriented than is typical in applied math research. Finally, CS&E 
differs from core science and engineering disciplines in its greater focus on advanced computer 
science and applied math and its inherent reliance on interdisciplinary collaborations.   

The fundamental importance of CS&E has frequently been recognized within the Foundation, 
which has attempted to fund cross-directorate programs in CS&E over the last two decades. 
Typically, these cross-cutting initiatives have been “ad-hoc”, temporary programs with very low 
proposal success rates that are inadequate for creating the critical mass of knowledge and 
communities for systematically advancing research on the abiding and pervasive challenges in 
CS&E. Over the years NSF has supported a number of cross-cutting CS&E programs starting with 
the Grand, National, and CS Challenges Programs in the early-to-mid 90s, components of 
Knowledge and Distributed Intelligence (KDI) in the late 90s, ITR in the early-mid 00s, Dynamic 
Data Driven Application Systems (DDDAS) in 2005, the Collaborations in Mathematical 
Geosciences (CMG), Collaborative Research in Computational Neuroscience (CRCNS), Advances 
in Biological Informatics, and PetaApps in the late 00s, and Cyber-enabled Discovery and 
Innovation (CDI) today, but these programs are too few and far between to support research in an 
area so vital to the nation’s competitiveness and future. Science agencies of foreign competitors 
have embraced CS&E and are investing heavily in this area, as is clearly spelled out in the NSF-
supported Simulation-Based Engineering and Science (SBES) study [58]. All of these 
considerations lead to the following recommendations. 

 

RECOMMENDATION:   
It is recommended that permanent programmatic activities in CS&E be established 
within NSF.  These activities should range from division- and directorate-level 
programs for discipline-specific aspects of CS&E, to permanent NSF-wide cross-
cutting CS&E programs possibly managed by OCI. Interdisciplinary projects could 
be co-funded between cross-cutting and relevant disciplinary programs. The 
permanent NSF programmatic activities in CS&E would play a significant role in 
incentivizing universities to expedite the creation of CS&E research and 
educational programs, which in turn would go a long way in addressing the 
immense shortage of well-trained computational scientists and engineers in the 
workforce.1 

 
                                                 
1 A resolution to create a new program in Computational and Data-Enabled Science and Engineering, 
coordinated by OCI, was unanimously endorsed by the Advisory Committee on Cyberinfrastructure and 
approved by the NSF Director on May 27, 2010.  A copy of the letter to NSF Director Arden L. Bement 
recommending the creation of this program is included in Appendix B. 
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Owing to the breadth of research in CS&E across many federal agencies, a companion 
recommendation is provided as follows: 

 

RECOMMENDATION:   
NSF should work with the Department of Energy and other agencies in the 
creation of an Interagency Working Group on CS&E or generally on Computational 
Science and Engineering, including Data-Intensive Computing, in the spirit of other 
NSF-wide working groups.  This broad-based Working Group could provide input 
leading to important interagency collaborations on new programs, particularly in 
HPC, and could lead to more focused and efficient use of resources to address the 
Grand Challenges facing our nation.  

 

 
Findings and Recommendations Concerning Advances in CI Needed to Confront 
Grand Challenge Problems: 

1) Computational Models, Methods, and Algorithms 
Computational methods and algorithms have played a crucial role in the solution of complex 

scientific and engineering problems since the earliest days of computing. They form the key link 
between mathematical models of physical phenomena of interest and high performance software 
that can be used to carry out analysis and prediction of the behavior of complex physical systems. 
Synergistic advances in computing and computational methods have stimulated scientific and 
engineering breakthroughs, which have in turn motivated further advances in enabling 
technologies. Over the past half-century, advances in computational methods have led to speedups 
in the solution of important scientific problems that are as significant as those resulting from 
advances in the hardware alone. For example, Figures 7-10 in Chapter 3 illustrate breakthroughs on 
scientific problems that have been enabled by advances in algorithms. Computational methods, 
however, are often taken for granted, due to past successes and their largely hidden role in 
powering CS&E software. But while recent isolated successes have occurred, computational 
methods that can scale to petascale systems are in their infancy for difficult problems, such as those 
with strong heterogeneities and anisotropies, multiphysics couplings, multiscale/multirate behavior, 
stochastic forcing, uncertain parameters, dynamically evolving geometries, continuum-atomistic 
couplings, large-scale combinatorial structure, and so on. But it is precisely these features that 
characterize next-generation Grand Challenge problems.  Absent a systematic research effort, 
continued progress on frontier CS&E problems is not assured, and Federal investments in 
hardware, networking, and software will be jeopardized. There is no question that building an 
exascale machine will be hard; but using it effectively to solve CS&E Grand Challenge problems 
will be even harder. 

To address the difficulties in developing computational methods for scientific Grand 
Challenges such as those described in Chapter 2, a broad-based, comprehensive, long-term, and 
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vigorous research program in advanced computational methods must be established to overcome 
the challenges faced in devising, analyzing, replicating, scaling up, and applying new methods for 
critical CS&E problems on advanced computing systems. This program should support 
multidisciplinary and interdisciplinary teams that bring together applied mathematicians, 
computer scientists, and computational scientists and engineers. In turn, an additional CI 
challenge is to ensure that advances in computational methods and algorithms developed in one 
discipline are disseminated across all disciplines that face computational problems with similar 
structure.  

Computational methods and algorithms play a key role at all stages of CS&E, including 
solution techniques for complex multiscale/multiphysics problems, advanced spatial and temporal 
discretization schemes for high fidelity simulations, scalable algorithms for solution of large 
linear and nonlinear algebraic systems and eigenvalue problems, methods for quantifying 
uncertainties in large-scale simulations, and algorithms for solution of large-scale optimization 
problems arising in design, control, and inversion. 

 

RECOMMENDATION:   
A broad-based, comprehensive, long-term, and vigorous research program in 
advanced computational methods should be established to overcome the 
challenges faced in devising, analyzing, replicating, and scaling up new 
computational methods for a new generation of critical CS&E problems on 
advanced computing systems. These should include advances in discretization 
methods, solvers, optimization, statistical methods for large datasets, and 
validation and uncertainty quantification methods including those in reproducible 
research, all targeted at enabling new frontiers in large-scale multiphysics, 
multiscale simulations on emerging architectures. This program should support 
multidisciplinary and interdisciplinary teams that bring together applied 
mathematicians, computer scientists, and computational scientists and engineers.  

 
2) High Performance Computing 

Transformative discovery and innovation in most disciplines important to addressing the Grand 
Challenges, such as climate, energy, environment, national security, disaster preparedness, and 
medicine, depend on the pervasive and seamless availability of computing at scale. According to 
many projections, general purpose exascale computing equipment is likely to be available in the 
next 10-15 years. However, this will likely be made possible only by dramatic changes in processor 
architectures, including very large scale of multi-core processing, power management, and 
packaging. New methodologies for power management at circuit, device, and system level, locality 
and concurrency of data and the computations that use/generate it, and resilience to system faults, 
are going to be crucial to the development of these systems.  

NSF has taken on the challenge of providing and maintaining the computational infrastructure 
for advanced computing for over two decades. Providing the new infrastructure needed to address 
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the Grand Challenges in the future will be an especially daunting objective as the complexity and 
heterogeneity of the new systems and urgency of the research challenges require that a variety of 
innovative and “bleeding edge” systems be supported. HPC is an area where U.S. and NSF 
leadership has yielded great competitive advantage and sustained national security, but it is also an 
area in which that leadership is constantly challenged. Reliability and usability of modern HPC 
hardware is likely to be a Grand Challenge in research on par with the others listed above and will 
need a deliberate and long-term strategy. 

 

RECOMMENDATION:   
It is recommended that NSF, through OCI, continue to give high priority to funding 
a sustained and diverse set of HPC and innovative equipment resources to 
support the wide range of needs within the research community. These needs 
include support for the development of technologies to meet the foremost 
challenges in HPC, such as power-aware and application-sensitive architectures, 
new numerical algorithms to efficiently use petascale and exascale2 architectures, 
and data flow and data analysis at the extreme scale.  

 

3) Software 
With the arrival of petascale computers and the expected progression toward multi-petascale 

and exascale computers in the next decade as well as the rapidly growing capabilities in data-driven 
discovery, opportunities for advancing science and engineering have never been higher. Also, with 
the expanding role of data-driven discovery and computational modeling and simulation in decision 
support as well as scientific discovery, the reproducibility of results places new demands on the 
robustness and documentation of software. As a result, the demands on innovative and sustainable 
software have never been higher. These considerations lead to the following recommendations. 

 

RECOMMENDATIONS:   
It is recommended that NSF: 

1) Support the creation of reliable, robust science and engineering applications 
and data analysis and visualization applications for Grand Challenges as well as 
the software development environment needed to create these applications. 

2) Provide support for the professional staff needed to create, maintain, evolve 
and disseminate the above applications as part of its grant funding. 
                                                 
2 Petascale computing is the state-of-the-art in high performance computing. A one petaflop supercomputer 
performs 1015 floating point operations per second (FLOPS). A one exaflop supercomputer would perform 
1018 FLOPS. (A typical PC performs on the order of 109 FLOPS.) 
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3) Establish best practices for the release of science and engineering 
applications and data as well as the workflows involved in their creation to ensure 
the reproducibility of computational results. 

 

4) Data and Visualization 
Many areas of science and engineering are now becoming data-driven sciences, a shift that has 

led to a new era in computing identified by Jim Gray as the “fourth paradigm” of science.  In this 
new paradigm, representing one of science’s grand challenges, science follows a data-centric 
approach in which massive amounts of digital scientific data must be collected, integrated, and 
interpreted via visualization, mining, and modeling to generate new hypotheses and to accelerate 
discovery and innovation. Data-intensive science is characterized by the massive scale and 
complexity of data it relies on and by the interdisciplinary and multidisciplinary methods it requires 
for data generation, management, analysis, visualization, and re-using and re-purposing, including 
the reproducibility of results. Because data used in the data-centric approach to science are often 
heterogeneous, spanning multiple spatial and temporal scales, in distributed locations, and of 
varying levels of performance, reliability, security, and accessibility, the challenges to scientists are 
not only to find ways to physically manage and move the data, but also to develop new software 
tools for managing, migrating, and efficiently analyzing the data. These tools must employ an end-
to-end approach that encompasses the entire data life cycle, from the initial data acquisition through 
data management and storage to data integration, analysis, visualization, and knowledge discovery. 

However, we currently lack the robust data infrastructure, innovative research in data 
visualization and analysis, and interdisciplinary data scientists and data professionals needed to 
address the requirements of the new scientific paradigm. We must now embark on critical research 
and the development of cyberinfrastructure to address our shortcomings in data analysis and 
visualization, data integration and interoperability, data provenance and stewardship, scientific 
workflow and meta-tools, exascale computing, active storage and online analysis, data storage and 
management, and high-speed computer networks. As data-driven science continues to increase in its 
scope and impact, we need to better communicate the value digital scientific data and visualization 
bring to the broad scientific community, policy makers, and the public. To this end, the NSF must 
support research infrastructure, robust and persistent cyberinfrastructure, and the training of next-
generation data scientists and professionals to empower data-driven science and data-intensive 
computing for discovery, innovation, and solution of society’s pressing problems in health, energy, 
environment, and food. 

 
RECOMMENDATIONS:   
NSF, largely through and coordinated by OCI, should support research 
infrastructure and robust persistent cyberinfrastructure to empower data-driven 
science and data-intensive computing for discovery, innovation, and solution of 
society’s pressing problems in health, energy, environment, and food.  
 1) Research: Funding for research on data management, network infrastructure, 
data analysis, and data visualization (i) to manage the pipeline from field 
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instruments to large-scale data analysis to end-user visualization and to public and 
policy makers, and (ii) to support data-intensive computing. 
 2) Data Infrastructure: Support for robust, persistent cyberinfrastructure to 
support the coordinated flow, storage, and management of data from instrument to 
(remote and local) computing resources to archiving and visualization. 
 3) Education: Support for building (i) the next-generation of data scientists who 
can work in a multi-disciplinary team of researchers in high performance 
computing, mathematics, statistics, domain-specific sciences, etc., (ii) data 
curation professionals who can support meta-data collection, indexing, and access, 
collaborating with scientists who collect and consume data. 
 

5) Education, Training and Workforce Development 
Universities are not adequately preparing today’s students with the right background, skills, 

breadth and depth to become tomorrow’s computational scientists and engineers, able to harness 
powerful new supercomputers for scientific discovery and engineering innovation. Our nation is 
losing its leadership position in CS&E among our principal competitors in the industrialized world, 
as other nations have embraced this challenge. New courses and curricula are urgently needed. 
Training in core CS&E skills needs to be widely available and easily accessible, to facilitate 
workforce development and accelerate research progress across the sciences and engineering. Much 
of the traditional compartmentalization of knowledge, both within our major universities, and to an 
extent within NSF itself, is not well suited for interdisciplinary research and education vital to 
CS&E.  It is critical that actions be taken by NSF to address these issues. 

 

RECOMMENDATIONS:   
NSF should support education, training, and workforce development through the 
following grants and new programs: 

1) Educational excellence grants at the undergraduate and graduate levels, 
which include funding for the development of new courses, curricula, and 
academic programs in CS&E that address the computational and analytical skills 
required in virtually all STEM disciplines. 

2) Support for the formation of virtual communities engaged in CS&E education, 
including virtual entities leveraging expertise across colleges, universities, national 
and government laboratories, and supercomputing centers. Training, in the form of 
short courses, in core skills at all levels should be available online and supported 
24/7, making the training broadly accessible.  

3) Institution-based traineeship grants that train graduate students and 
postdoctoral fellows in the multidisciplinary, team-oriented iteration among 
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experiment, theory, and computation that is rapidly becoming a paradigm in critical 
STEM research areas and that has long been a standard in government 
laboratories and industry.  

4) The creation of a pan-agency facility or program to coordinate training in 
CS&E education. 

5) Grants that facilitate the transition of exceptionally talented graduate and 
postdoctoral students in computational science and engineering to permanent 
positions in academia as well as industry and government/national labs.  

6) Sustainable, permanent programs in CS&E research and education at all 
funding agencies to demonstrate a long-term commitment to supporting CS&E as 
a discipline, thereby creating reliable partners for universities seeking institutional 
transformational change and for trained workers seeking careers in CS&E.  
 

6) Grand Challenge Communities and Virtual Organizations 
Collaboration is essential to meeting the Grand Challenges, and CI-enabled virtual 

organizations offer considerable promise for improving scientific and engineering productivity. 
However, there are many remaining obstacles to full exploitation of CI for collaboration. The scope 
of these obstacles goes beyond the purview of this report, and is addressed in a separate report to 
the ACCI. However, for the purposes of this report the following recommendations can be made. 

 

RECOMMENDATIONS:   
The NSF should initiate a thorough study outlining best practices, barriers, success 
stories, and failures, on how collaborative interdisciplinary research is done among 
diverse groups involved in Grand Challenge projects. 
The NSF should invest in research on virtual organizations that includes:  

1) Studying collaboration, including virtual organizations, as a science in its own 
right; 

2) Connecting smaller virtual organizations to large-scale infrastructure by 
providing supplementary funds to such projects, supporting development of tools, 
applications, services, etc. with a mandate to disseminate those elements to other 
communities and users; 

3) Investing in systematic, rigorous, project-level and program-level evaluations to 
determine the benefits from virtual organizations for scientific and engineering 
productivity and innovation; 

4) Encouraging NSF program officers to share information and ideas related to 
virtual organizations with training and online management tools. 
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1.0 INTRODUCTION 

  
No period in human history has witnessed 

the development of more technologies that 
affect scientific discovery than the years 
bridging the turn of the last century. These 
include major advances in high-performance 
computing (HPC), in broad areas of 
information technology, grid computing, 
advanced networking, the internet, data 
repositories, scientific visualization, and 
many more, all collectively called the cyber-
infrastructure (CI). In recognition of the 
enormous importance of these developments 
to all areas of scientific and engineering 
research, the National Science Foundation 
created the Office of Cyberinfrastructure 
(OCI) in July 2005, to manage advances in CI 
across the Foundation. 

The OCI is, by design, an overarching 
unit within the Foundation in that it provides 
support to all other NSF Directorates. While 
support of research in discipline-specific 
components of computational science and 
some of the development of related 
infrastructure is still the responsibility of 
individual directorates, OCI functions as both 
an agent enabling collaborations across 
disciplines and as a steward of research and 
new developments in CI itself that are critical 
to the success of interdisciplinary research.   

The remarkable success of NSF- 
supported developments in CI during the 
short time period since OCI was created is an 
indication of the rising importance of 
interdisciplinary research and the critical role  

the CI plays in facilitating collaboration of 
diverse and widely separated communities of 
researchers. The success may also be an 
indication of the expanding role of 
computational science and engineering in all 
areas of scientific inquiry and technology, and 
of the advances in computational science and 
engineering made possible by CI. Underlying 
these advances are investments in the 
TeraGrid and the Open Science Grid, the Path 
to Petascale Computing, and in numerous 
services provided by CI in support of data 
intensive computing, software, HPC, 
networking, data storage, and education.  

Looking forward, critical scientific and 
technological challenges loom ahead that will 
require major advances in science and 
engineering that cross the boundaries of many 
traditional disciplines.  These are the Grand 
Challenges of science and technology that our 
country faces in the immediate future; at stake 
are our competitiveness, economy, security, 
general welfare, and leadership in scientific 
discovery. The challenges are daunting and 
they range from issues related to climate, 
energy, natural hazards, and defense to 
medicine, manufacturing, drug design, 
biology, and cosmology. To meet challenges 
of such importance and scale will require 
unusual coordination of and collaboration 
between the diverse communities of 
researchers referred to earlier, as well as 
corresponding advances in CI to facilitate 
these collaborations. These groups are the 
Grand Challenge Communities.   

1 Introduction 



 2

1.1 Cyber Science and Engineering 

(CS&E) 
The expanding role of CI in providing the 

infrastructure for interdisciplinary research 
calls for the expansion of OCI’s portfolio and 
the inclusion of new directions in CI-related 
research. It also calls for an expanded view of 
CI itself, now including many of the basic 
computational science activities – modeling, 
simulation, data-driven science – that should 
be developed in step with advances in the 
infrastructure itself. To develop a plan for 
executing these expanded programs, ACCI 
created several task forces, including the 
present Task Force, that has as its mission the 
study of the following broad issues: 1) what 
new developments in CI will be needed to 
impact new scientific research; 2) how can 
the work of Grand Challenge Communities 
and Virtual Organizations be facilitated by 
OCI; 3) what new programs within OCI are 
needed to carry out its expanded mission; and 
4) explore the role of computational science 
and engineering enabled by 
cyberinfrastructure in scientific discovery and 
engineering innovation and its place in the 
organizational structure and mission of NSF. 
The key scientific target of this study will be 
referred to as Cyber Science and Engineering 
(CS&E).  This includes the traditional realm 
of computational science and engineering, a 
discipline at the intersection of applied and 
computational mathematics, computer 
science, and core science and engineering 
disciplines, but now dramatically enhanced 
by access to the full spectrum of CI-enabling-
technologies: HPC, software, modern 
computational models and algorithms, data 
intensive computing, networking and storage, 
and visualization, as well as issues of 
education.  But overlaid on such scientific 
goals are issues of new communities of 
domain science and computer science 

specialists that can employ CI to tackle Grand 
Challenges of great complexity and 
importance: the Grand Challenge 
Communities and Virtual Organizations.   

 

1.2 Collaboration and the 

Cyberinfrastructure 
It has been recognized since the 17th 

Century that much scientific research takes 
place in distributed communities involving 
multiple institutional venues, often separated 
by geographic distance. Successful 
communities organize production – their 
ways of doing things – to establish objectives, 
facilitate teamwork, and resolve disputes that 
might otherwise prevent them from meeting 
those objectives. Communities have 
developed various mechanisms to facilitate 
collaboration, including scientific societies, 
conferences, workshops, peer-reviewed 
publications, academic departments, 
institutes, and sabbaticals. Yet collaboration 
within and across communities remains 
difficult. Grand Challenge Communities often 
include participants from intellectual 
disciplines that have different and conflicting 
conventions of collaboration, are not used to 
working with each other, and are in various 
geographic locations. At the same time, 
Grand Challenge Communities have the 
potential to use modern cyberinfrastructure to 
enable more effective collaboration. CI offers 
a promising pathway to that high level of 
collaboration. Within the modern computing 
environment, multiple groups are able to form 
dynamic cooperative interrelationships – 
virtual organizations – that consolidate and 
share the computing, the data, and human 
resources as required to attack problems in 
advanced science and technology. OCI has 
taken an important lead on this, but 
collaboration in the large is a topic of such 
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broad importance that NSF as an organization 
should engage the matter. A separate report to 
the ACCI focuses on this. 

1.3 Organization of this Report 
This document describes the findings of 

the Task Force on Grand Challenges. Within 
this task force, two study areas and several 
working groups were created: 

Area 1: CI Requirements for Next-Generation 
CS&E. Within this area are five working 
groups: 

1)  High Performance Computing (HPC)  
Focuses on the new opportunities for 
scientific discovery that could be 
achieved through advances in HPC. 

2)  Software 
Focuses on the critical software 
developments needed to address the 
Grand Challenges amid a changing 
landscape of computer architectures; 
also focuses on approaches to the 
maintenance and support of relevant 
software. 

3)  Data and Visualization 
Addresses how the OCI can prepare 
for and capitalize on the enormous 
increases in data relevant to scientific 
discovery, as well as methods of data 
acquisition, storage, and analysis. 

4) Advanced Computational 
Methodologies 
Addresses a central area of CS&E, 
namely, the development of new and 
effective algorithms and 
computational methods that optimize 
the use of CI, so that computational 
science does indeed become the third 
pillar of the scientific method. 

5) Education and Workforce Preparation 
Educates future generations of 

scientists and engineers in the 
foundations of CS&E and prepares 
them for using CI and contributing to 
its development. 

Area 2: Collaboration, Including Grand 
Challenge Communities and Virtual 
Organizations. The goal of this area is to 
develop technologies, and organizational 
strategies that enable CI to facilitate effective 
collaboration of distributed multidisciplinary 
groups. Such collaboration is essential if 
science and engineering are to be effective in 
overcoming the overarching societal Grand 
Challenges.  

In what follows, examples of several 
Grand Challenge problems are described, the 
solutions of which will require extraordinary 
advances in each of the components of CS&E 
and, correspondingly, significant advances in 
CI. To address these challenges, one must 
create advanced computational models to 
provide a basis for representing our 
knowledge of the physical realities involved 
in each Grand Challenge, and extensive data 
to inform the models or to represent 
information from which new knowledge can 
be obtained. Ultimately, to resolve these 
models or process these data, advances in 
High Performance Computing and 
computational methods and algorithms and, 
correspondingly, scientific software are 
needed. A great challenge is also the 
organization of the work itself in a way that 
the GC Communities and VO’s can function 
effectively and efficiently to meet the 
challenges. Finally, the advances toward 
resolving the Grand Challenges will have no 
lasting value if they are lost to our own 
generation: we must find ways to equip the 
next generation of scientists and engineers 
with the tools, concepts, and principles of 
CS&E. These component issues are dealt 
with in the chapters following this 
introduction. 
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2.0 GRAND CHALLENGES IN CS&E 
 

This chapter contains brief expositions 
on several examples selected as 
representative of principal technological and 
scientific problems requiring new 
developments in CI to enable advances in 
scientific discovery. They embody critical 
issues in the ever-expanding vistas of high 
performance computing; in the ubiquitous 
area of software; in data and visualization; in 
the fundamentally important area of 
advanced computational methods; and on the 
critical area of education in CS&E and CI.  

2.1 Addressing the Grand 

Challenges 
The Grand Challenges were U.S. policy 

terms set in the 1980’s as goals for funding 
high-performance computing and 
communications research in response to 
foreign competition.  They were described as 
“fundamental problems of science and 
engineering, with broad applications, whose 
solution would be enabled by high-
performance computing resources…” (cf. 
http://www.nae.edu) Today, the Grand 
Challenges are interpreted in a much broader 
sense with the realization that they cannot be 
solved by advances in HPC alone: they also 
require, as noted earlier, extraordinary 
breakthroughs in computational models, 
algorithms, data and visualization 
technologies, software, and collaborative 
organizations uniting diverse disciplines.  

Many communities have come forth over the 
past two decades with reports that indentify 
specific Grand Challenges in their respective 
fields. These GC’s virtually all require 
breakthroughs in CS&E enabled by advances 
in CI. An incomplete list of examples is: 

• Advanced New Materials (electronic 
structure properties, chemical 
catalysts, …) 

• Prediction of Climate Change 
• Quantum Chromodynamics and 

Condensed Matter Theory 
• Semiconductor Design and 

Manufacturing 
• Drug Design 
• Energy through Fusion  
• New Combustion Systems 
• Astronomy and Cosmology 
• Cardiovascular Engineering 
• Water Sustainability 
• Cancer Detection and Therapy 
• CO2 Sequestration 

 
 In the subsections below, we give brief 
accounts of several representative problems 
that attempt to not only identify the open 
problems that complicate the challenges 
themselves, but also the advances in CS&E 
and CI needed to confront them. We 
emphasize that these are merely examples of 
Grand Challenges, and many other problems 
could have been chosen. 

2 Grand Challenges in CS&E 
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2.2 Climate Change Prediction to 

Advise Regional Adaptation 
Strategies and Global Mitigation 
Policies 

 Decades of careful evaluation of weather 
and climate measurements, paleoclimate 
proxy records, and the output of global 
climate models have produced convincing 
evidence that the earth’s climate is 
undergoing change at a rate more rapid than 
that of any previous period in human history. 
More over, human activities may be at least 
partially responsible for that change. To 
address the threat posed by such change, the 
global society rightly demands accurate 
projections of climate change, with ever-
decreasing levels of uncertainty. A 

complementary demand exists for means to 
anticipate climate changes with greater 
spatial discrimination over the next 30 years, 
especially as those changes may affect 
extreme weather and climate events. 

The history of capability computing is 
coincident with the history of the 
development and standard use of weather and 
climate models, ensembles, and earth system 
models. Since the early experiments with 
numerical weather prediction on the first 
general-purpose computer, ENIAC, the scope 
of the modeling system has expanded along 
with computer capability. Phillips' 
development of a global circulation model of 
the atmosphere in 1956 introduced the 
modern age of numerical weather prediction. 
In 1967, Manabe and Weatherald projected 
climate change based on doubling of 
atmospheric CO2 concentrations, which 

Figure 1: A simulation of a self-generated Category 4 tropical cyclone at Day 0 (A), Day 2 (B), Day 4 (C), and Day 6 (D) from the modeling 
experiment described in McClean, et.al. (2010). The model uses 0.25-degree grid spacing for the atmosphere and 0.1-degree spacing for the 
ocean. The colors show sea-surface temperatures and the contour lines display surface pressure. At this resolution, the phenomenon of cold 
water upwelling produced by the storms winds can be realistically simulated, and it appears as a cold water “wake” behind the storm track. 
(Source: Charles Doutriaux, LLNL, 2008. This work was performed under the Contract DE-AC52-07NA27344.) 
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required radiation balance calculations with 
long wave absorption in the atmosphere. In 
1976, NCAR became the first recipient of a 
Cray 1  
supercomputer performing at a rate of 4 
Mflops. By 1981, Hansen projected a cooling 
effect of aerosols in the atmosphere.  The 
Cray X-MP, introduced in 1982, 
benchmarked at 21 MFlops. In 1991, the 
global cooling effects of the Mt. Pinatubo 
eruption were predicted correctly. The largest 

computer in the world, as described in the 
Top500 list, crossed the 100 gigaflop line in 
1993, and by 1997 the first teraflop machines 
had arrived. This additional power allowed 
coupled three-dimensional ocean and 
atmosphere models to be explored, and in 
2001 the observed warming of the ocean 
basins was explained using simulation. In 
2002, the fastest computer in the world was 
the Japanese Earth Simulator with a peak 
speed of 40 Tflops. The Kyoto treaty went 
into effect in the same year (2005) that 
Hurricane Katrina raised new questions about 
regional effects of global warming. The 
Intergovernmental Panel on Climate Change 
(IPCC) Fourth Assessment Report of 2007 
utilized massive computing resources in an 
international effort to bound the possible 
future consequences of climate change, but 
the questions about implications for the 
environment only intensified. In 2009, the 

first Petaflop computer became available 
and, in 2010, the first generation Earth 
System Model (CCSM4) was released, 
coupling ocean, atmosphere, land, ice and the 
carbon cycle with terrestrial and oceanic 
ecosystems. The research focus of the NSF 
expanded to include shorter-term decadal 
climate predictions. 

Despite progress in observing, 
understanding, and modeling the climate, the 
current generation of climate models have 
reached a plateau in their ability to simulate 
salient features of Earth's climate. The 
models cannot discriminate climate change 
signals observed in different parts of 
continents, nor can they provide the detailed 
regional information that is critically needed 
for developing regional adaptation strategies. 
Worse, the current models have large 
systematic errors in critical parts of their 
framework for the global climate system, and 
they severely underestimate the variability of 
weather and climate. As a result, the models 
may fail to predict the extremes that have the 
largest impact on human society and natural 
ecosystems. 

 In 2008, the international weather and 
climate modeling community came together 
at the World Modeling Summit (WMS) and 
reached a consensus: the time is ripe to 
revolutionize the application of numerical 
models to the prediction of climate through 
the development of seamless prediction 
methodologies, that unify the weather and 

The challenge for high-performance 
computing is formidable and feeds 

into challenges in software, data 
management, analysis, and 
visualization, as well as the 
necessarily virtual global 

organization that must work across 
national boundaries to develop the 
models and evaluate their output. 

The climate models used in the 
most recent IPCC assessment 

showed unequivocally that human 
activities are responsible for the 

change in the global mean climate, 
but they are unable to provide 

regional information suitable for 
adaptation to climate change. 
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climate forecast problems [68]. At the heart 
of the WMS findings was the hypothesis that 
the ability to resolve important processes in 
the atmosphere and ocean and at the land 
surface, as well as the interactions among 
them (already the case in weather prediction 
models), can dramatically improve the 
fidelity of the climate models. 

 A report from the WMS called for a 
revolution in climate modeling that would 
begin by establishing multiple international 
high performance computing facilities, for 
example, one each in the Americas, Asia, and 
Europe. These facilities would be virtually 
interconnected and dedicated to the 
development and application of high-
resolution climate models. The global 
climate models would be capable of 
resolving clouds, ocean eddies, the variations 
of the landscape, and the cracks and seams in 
sea and land ice. Such models would require 
a spatial resolution of a kilometer or less and 
be able to run for simulated centuries or 
longer within a few days of wall-clock time. 
The challenge for high performance 
computing would be formidable, and it 
would also feed into modeling challenges 
related to software and data management, 
analysis, and visualization. Equally important 
is the challenge of creating a global virtual 
organization in which institutions can work 
together to develop models and evaluate their 
output.  

As will be explained in Chapter 3, 
predictive models of climate require 
extensive amounts of accurate data. The data 
are necessary to quantify uncertainty and to 
enable meaningful validation and verification 
of processes. Not only do the data provide a 
detailed record of relevant physics and 
chemistry of the environment, but they must 
also adequately inform the complex 
computational models.  

 In summary, the Grand Challenge here is 

to improve our understanding of weather and 
climate by building the next generation of 
models. Those models must accurately reflect 
and predict climate conditions at the regional 
decision-making scale, and they must include 
the full distribution of weather events that 
compose the delivery system of climate. In 
addition, we must organize our efforts, via 
CI, at regional, national, and global levels to 
address the pressing problem of global 
climate change.  

2.3  Human Sciences and Policy 
New sources of data and new means for 

analysis are transforming the human sciences 
in ways that advance knowledge, solve grand 
challenges, and inform policy.  Archives of 
text -- historical and contemporary – can be 
examined using automated information 
extraction from digitized libraries, blogs, 
email messages, speeches, government 
reports, and other web sources. Data from 

individual-level registration, primary 
participation, campaign contributions, ballot 
images and automated precinct-level result 
reporting can inform electoral studies.  Credit 
card and real estate transactions, RFID 
product tracking and geographic location 
information from cell phones or toll booths 
using transponders (e.g., Fastlane or EZPass) 
can be used to study commercial behavior.  
Digital medical records, hospital admittance 
data, and location-based data might transform 
our understanding of health care.  

New sources of data and new 
means for analysis are transforming 

the human sciences in ways that 
advance knowledge, solve grand 

challenges, and inform policy. 
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Developments in genomics, proteomics, 
metabolomics, and brain imaging allow study 
of person-level variables never before 
possible.  Increasingly powerful models 
allow the study of phenomena from person to 
globe, and in reverse, pushing beneath the 
person to the organ, cell, or something even 
smaller. Cyberinfrastructure can bring to 
researchers data on single individuals as well 
as networks of individuals. Satellite pictures 
of human-generated light at night and 
networks of roads and other infrastructure by 
day can provide opportunities to study 
phenomena not previously observable.  New 
techniques allow the exploitation of such 
resources without infringing on personal 
privacy or causing similar social problems. 

These changes bring both opportunities 
and challenges. As more powerful and more 
widely applicable knowledge arises, new 
scientific challenges appear that require 
advances in cyber science and engineering to 
resolve them. The human sciences are part of 
this remarkable change, as illustrated by 
three examples: societally-informed climate 
models, global-scale epidemiological models, 
and understanding human networks. 

2.3.1 Societally-Informed Climate  
Models: A new generation of 
computationally intensive models is needed 
to represent processes such as cloud 
formation at finer scales, “well enough to 
provide the sorts of prediction that policy-
makers and other stakeholders need” [62]. 
Human activities such as land clearing, urban 
expansion, and agriculture create complex 
mosaics of highly fragmented land cover that 
become increasingly important as modeling 
is refined.  Equally important, such 
refinement makes it possible to study how 
human activity is altered by climate change.  
Global warming might affect zones of 
agriculture, sea level rise might alter affect 

coastal urbanization, and reductions in 
rainfall might make some areas 
uninhabitable.  Human-climate feedback is 
essential to climate dynamics, but current 
models cannot meet the need Meso-scale 
climate models often rely on ‘scenarios’ of 
land cover based on assumed conditions 
rather than actual data, and produce 

compromised short- and long-term 
predictions of climate change. A new 
generation of models must explicitly 
incorporate social processes and critical 
feedback between human activity and the 
climate system.  This requires:  

• Coherent databases of social activities 
(e.g., demography, transportation, and 
other factors) for use in climate-change 
modeling to provide guidance for land 
managers, policy makers, commuters, 
agriculturalists and others who make 
decisions based on environmental 
conditions.  This requires the 
development of ontologies to facilitate 
data integration and exchange.   

• High performance computing capable of 
handling state-of-the-art climate models 
and dynamic models of land cover 
change, emissions, urban growth and 
other effects of human activity.    

A new generation of computationally 
intensive models is needed to 

represent processes such as cloud 
formation at finer scales, “well 
enough to provide the sorts of 

prediction that policy-makers and 
other stakeholders need”. 
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• Calibration and validation of packaged 
modeling products for decision-makers 
to address uncertainties in model results.  
Land use modeling must be incorporated 
effectively into the climate models now 
serving as benchmarks. 

• Data visualization for understanding and 
explaining complex human and climate 
dynamics arising from this new 
generation of models to provide tangible, 
accessible and comprehensible 
explanations of model results.  Abstract 
representations do not provide policy 
makers and stakeholders with realistic 
understanding of their own geographic 
‘backyards.’ 

• Reconciliation of the three-dimensional 
structure of climate models with the two-
dimensional structure of land use models. 

2.3.2 Global Scale Epidemiological  
Models: A global pandemic could kill 
millions, enabled by rapid spread of 
pathogens in the jet age. Computational 
power linked to data streams about human 
movement has spawned the field of 
computational epidemiology, but it lags 
behind weather and climate modeling. The 
granularity of data necessary to predict 
disease spread is not yet known, nor are the 
means to model the micro-movements of 
individuals and macro flows of groups.  

Effective modeling of global disease spread 
would probably surpass current 
cyberinfrastructure capability, and work must 
be done to enable global-scale 
epidemiological models that allow 
researchers, medical practitioners, and public 
officials to implement mitigation strategies. 
Human movement and how human behavior 
might change given exposure to particular 
pathogens under differential social and 
behavioral conditions must be incorporated 
into models, using a biological framework of 
transmission probabilities for particular 
pathogens. Such models would require 
integration of heterogeneous data regarding 
human movement and behavior of 
individuals within communities, ranging 
from commuting patterns in India to school 
attendance in the US. Computational power 
and effective algorithms for modeling the 
movements of billions of human and 
nonhuman actors (e.g., animal disease 
vectors) must be developed.  All of this must 
be done with careful attention to the 
sensitivity of individual location and 
movement in order to prevent infringement 
of privacy, including measures to keep 
individual identities hidden during data 
collection and analysis. 

2.3.3 Understanding Human Networks: 
Much human behavior involves networks of 
individuals, groups, communities, and 
societies.  The challenges discussed above 
involve human network behavior, and other 
challenges depend on this as well.  Recent 
research has demonstrated the ability to 
analyze small to moderate-sized networks 
and understand why people gain weight, 
express political views or communicate as 
they do with colleagues or friends. Network 
research offers the opportunity to understand 
collective intelligence in knowledge 
accumulation (e.g., Wikipedia), prediction of 
event outcomes (e.g., the Iowa Electronic 

Effective modeling of global disease 
spread would probably surpass 

current cyberinfrastructure capability, 
and work must be done to enable 

global-scale epidemiological models 
that allow researchers, medical 

practitioners, and public officials to 
implement mitigation strategies. 



 11

Markets), or the sourcing of engineering 
solutions (e.g., InnoCentive). 
Cyberinfrastructure enables the phenomena 
and the means to study them, but creates 
challenges as well. One challenge is the 
analysis of very large social networks 
involving network ties of variable strength 
and duration, as well as greater information 
about individuals who are connected in such 
ways.  

Improved understanding of human 
networks is key to increasing the value of 
investments in science, along the path 
leading from knowledge to innovation to 
economic welfare. Current scientometric 
analyses focus on authors, institutional 
affiliation, topic, publications and patents or 

other simple variables.  Future analyses will 
include complete individual biographies with 
educational and employment history, 
histories of scientific activity, and 
connections between scientists and those 
within and outside their professional worlds. 
Human connections are sometimes contained 
within boundaries that can be drawn easily 
(e.g., organizational networks), but human 
connections are often complex, starting from 
an individual and moving outward to ties that 
increasingly exist in “virtual” worlds such as 
cyberspace.  Cyberinfrastructure provides the 
potential to link existing information sources 
(databases, published literature) with data 
from social networks, distributed sensor 

webs, and other sources in ways that could 
revolutionize the human sciences. This 
development would also place huge demands 
on cyberinfrastructure and present 
fundamentally new challenges such as 
reworking the science of sampling (e.g., 
studying part of a population with confidence 
that the sample represents the whole) and 
understanding the multi-faceted nature of 
social network ties and their effects on 
human behavior.  These challenges are 
welcomed by the human sciences.  

2.4  Macromolecular Structure and 

Complexes 
 Biology can anticipate unprecedented 
opportunities in the 21st century, because it 
stands to benefit enormously from the 
confluence of three trends in scientific 
methodologies: advances in experimental 
techniques in biomolecular structure 
determination, progress in theoretical 
modeling and simulation for large biological 
systems, and breakthroughs in computer 

technology. Experimental data can now be 
analyzed and interpreted further by modeling, 

To study such biomolecular systems 
successfully and reliably, new 

methods and models need to be 
systematically developed:   force 
fields, hybrid quantum/molecular 

mechanics models, enhanced 
sampling techniques, rigorous coarse 

graining of multiscale models and 
integration of all these tools to allow 

“telescoping” from one level of 
resolution to another. 

   Improved understanding of 
human networks is key to 

increasing the value of investments 
in science, along the path leading 
from knowledge to innovation to 

economic welfare. 
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Figure 2: Peak ground velocities for a southeast-to-northwest Mw8.0 scenario on the San 
Andreas fault from the Salton Sea to Parkfield ('Wall-to-Wall'). The simulation computed 350 s of 
wave propagation in a 800 km x 400 km x 100 km subset of the SCEC Community Velocity Model 
(CVM) V4 (32 billion grid points with a spacing of 100 m everywhere) and a minimum shear-wave 
velocity of 500 m/s up to a maximum frequency of 1 Hz. The source description was generated by 
combining several Mw7.8 dynamic source descriptions. 'ShakeOut-D'The simulation used 96,000 
NICS Kraken cores, took 2.6 hours wall clock time. (Source: SCEC, Nov 2009) 

and predictions for different approaches can 
be tested and advanced through 
computational methodologies and 
technologies. 

 Markedly enhanced computational 
resources will allow systematic solutions of 
various important biomolecular problems. In 
the increasing complexity of temporal and 
spatial dimensions, such problems include 
macromolecular folding, biochemical 
binding and reaction mechanisms, 
macromolecular pathways, and 
supramolecular cellular processes. Prominent 
examples of macromolecular folding are 
protein folding and RNA folding.  Examples 
of reaction mechanisms include enzyme 
catalysis and protein/ligand interactions. 
Macromolecular pathways include DNA 
replication and repair fidelity, protein 
synthesis, chromatin organization, and RNA 
editing. Supramolecular cellular processes 
include protein signaling networks, plant cell 
wall formation, and 
endocytosis. 

If the study of such systems 
is to be successful and reliable, 
new methods and models need 
to be systematically developed, 
including the use of: force 
fields, hybrid quantum/ 
molecular mechanics models, 
enhanced sampling techniques, 
and rigorous coarse graining of 
multiscale models. All of these 
tools must be integrated to 
allow “telescoping” from one 
level of resolution to another to 
focus on specific details.  In 
concert with these 
developments, infrastructural 
support for generating and 
analyzing voluminous 
molecular data requires 
development of simulation 

management tools for clustering, archiving, 
comparisons, debugging, visualization, 
communication, and replication. Such new 
capabilities must be developed in a focused 
manner to avoid computational bottlenecks 
(e.g., the microsecond timescale for protein 
folding due to long-range intermolecular 
interaction computations, or the lack of 
rigorous coarse-graining models to allow 
scaling up to macromolecular pathways and 
supramolecular cellular processes). 

2.5 Hazard Analysis and 

Management   

 Hurricanes, earthquakes, tornadoes, 
contaminant releases, wildfires, or 
incendiaries – all of these catastrophic events 
have disruptive implications for society and 
must be properly managed.  Keys to hazard 
management are, first, the ability to predict a 
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wide range of possibilities for a priori 
planning and, second, the means to perform 
simulation and near-term prediction to 
support decision-making strategies to 
manage specific issues. High resolution 
models of the physics that are calibrated by 
sparse observation data and laboratory scale 
experiments need to integrate methods of 
uncertainty quantification to predict the 
effects of the extreme scale.  Multiscale and 
multiphysics methodologies are essential to 
our ability to represent the complex physics 
inherent in most of these phenomena. Such 
models of physics must be systematically 
coupled to social and behavioral models of 
public actions that affect populations.  

 In many of these hazard applications 
(e.g., storm surge computations using the 
ADCIRC code) the basic physics model 
evaluations for a single computation often 
consumes O(1) hour on a petaflop class 
computer, i.e., simulations require 1015 

FLOPS and commensurate memory. 
Predictive simulations will require ensembles 
of hundreds if not more of these in hours 
with appropriate analytics on the outcomes of 
these computations. Among the 
computational needs here are thus the ability 
to do vast ensembles of simulations in a 
timely fashion and the ability to integrate the 
high data volume outputs of these 
simulations into usable predictions using 
appropriate analytics. A second major issue 
of hazard analysis is the lack of observational 
data at extreme scale (e.g., data on Category 
5 hurricanes, 9.0-magnitude earthquakes, or 
109 m3 volcanic eruptions are not readily 
available). Consequently, predictions have to 
rely on very large ensembles of models and 
high resolution simulations with quantified 
error and uncertainty.  

2.6 Managing Greenhouse Gases 
 There is consensus in the scientific 
community that increased levels of 
greenhouse gases – particularly  carbon 
dioxide – can adversely affect the global 
climate. A main contributor to the increasing 
atmospheric concentration of CO2 is fossil 
fuel combustion for power generation. The 
demand for energy is expected to grow in 
developed and, in particular, developing 
countries. Alternative fuels are unlikely to 
replace fossil fuels in the short term, and 
fossil fuels will be in demand for the 
foreseeable future.  

One of the most promising approaches 
for reducing atmospheric CO2 is geological 
sequestration, that is the injection of CO2 into 
deep brine aquifers and oil and gas 
reservoirs. In geological sequestration, CO2 
from power plant emissions, natural gas 
fields, and other sources is captured, 
compressed, and injected as a supercritical 
fluid into deep brine aquifers and depleted oil 
reservoirs.  

While geological sequestration is a 
proven means of permanent CO2 storage, it is 
difficult to design and manage such efforts. 
Predictive computational simulation may be 
the only means to overcome problems from 
the lack of complete characterization of the 
subsurface environment, the multiple scales 
of the various interacting processes, the large 
areal extent of saline aquifers, and the need 
for long-term predictions. Key issues for 
modeling CO2 injection in saline formations 

Predictive computational 
simulation may be the only 

means to account for the lack of 
complete characterization of the 

subsurface environment. 
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are the large uncertainty in predicting 
subsurface CO2 flow rates which is the direct 
result of uncertainty in characterizing 
formation permeability and porosity and 
multiphase fluid behavior as a function of 
pressure and temperature. The flow of CO2 is 
dominated by gravity and viscous forces 
during the injection period, whereas gravity 
and capillary forces dominate any movement 
of CO2 after the injection has ceased. 
Computational capabilities at the peta- and 
exascale will be necessary for the type of 
predictive simulations needed. 

2.7 Assembling the Tree of Life 
Knowledge of evolutionary relationships 

is fundamental to biology. Those 
relationships are captured in the form of 
phylogenetic trees. A grand challenge for 
biology is to reconstruct the detailed shape of 
the “tree of life” – the phylogeny of all known 
organisms. Such phylogenetic trees help us 
understand and predict 

• Functions of and interactions between 
genes, 

• Relationships between genotype and 
phenotype, 

• The co-evolution of hosts and parasites, 
• The origins and spread of disease, 
• Drug and vaccine development, and 
• The origin and migrations of human 

populations [36]. 
 
Figure 3 shows small fragments of the 

tree of life, those concerning (a) the 
relationships among herpes viruses that affect 
humans, (b) the evolution of the West Nile 
Virus, and (c) the relationships among 
antivenins for various poisonous snakes [36]. 

The process of reconstruction begins with 
descriptions of species (behavior, 
morphology, metabolism, and DNA) and 

Figure 3: Phylogenetic trees for (a) Herpes viruses (b) West Nile Virus, and (c) 
snake antivenins [36]. Images courtesy of Bernard Moret and Joel Cracraft. 
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models of evolutionary processes (speciation, 
population evolution, molecular character 
evolution, etc.) and then proceeds to search 
the space of all possible trees to find the tree 
that conforms best to various criteria such as 
maximum parsimony, maximum likelihood, 
and minimal evolution (including distance-
based methods). Because of the vast number 
of possible trees, most algorithmic 
formulations of this problem are NP-
Complete, and immense computing resources 
are required to construct even relatively small 
trees (e.g., involving 100-500 taxa) 
[3]. Furthermore, many algorithms 
construct an unrooted tree that 
provides only a partial constraint on 
the evolutionary processes that 
produced the observed variations 
across taxa. Moving from our current 
capability to handle 10s-100s of taxa 
to the ultimate requirement to handle 
the estimated 10-200 million species 
on the Earth will require major 
advances in both HPC and algorithm 
development. In addition, assembling 
the data to describe these species is a 
major undertaking that will involve 
the development of methodologies 
and strategies for prioritizing which 
species should be included and in 
what order. Tools and methodologies 
(simulation, visualization, etc.) are 
also needed to validate the algorithms 
and the resulting phylogenetic trees. 

To achieve those goals, we must build a 
Grand Challenge Community that includes 
scientists in phylogenetic biology and 
computer science and engineering. Initial 
efforts in this direction include the iPlant 
community [26] and CIPRES 
(Cyberinfrastructure for Phylogenetic 
Research) [10]. 

2.8 Gamma Ray Bursts 

 Ninety years after Einstein first proposed 
his General Theory of Relativity (the GR), 
astrophysicists are probing deeper into 
regions of the universe where gravity is very 
strong and where, according to GR’s 
geometric description, the curvature of 
spacetime is large. 

Regions of strong curvature are 
notoriously difficult to investigate with 

conventional observational astronomy, and 
some phenomena might bear no observable 
electromagnetic signature at all and may only 
be visible by neutrinos (if sufficiently close to 
Earth) or by gravitational waves - ripples of 
spacetime itself that are predicted by 
Einstein’s GR. To date, gravitational waves 
have not been observed directly, but 
gravitational-wave detectors (e.g., LIGO [30], 
GEO [19], and VIRGO [64]) are in the 
process of reaching sensitivities sufficiently 

Figure 4: A rapidly spinning deformed newborn neutron star at the center of a dying 
massive star that may produce a Gamma-Ray Burst. Simulation by C. D. Ott (Caltech), 
rendering by R. Kaehler (ZIB/KIPAC). 



 16

high to observe interesting astrophysical 
phenomena. 

Until gravitational-wave astronomy 
becomes a reality, astrophysicists must rely 
on computationally and conceptually 
challenging large-scale numerical 
simulations. Simulations allow us to grasp the 
details of energetic processes occurring in 
regions of strong spacetime curvature that are 
shrouded from direct observation in the 
electromagnetic spectrum by intervening 
matter or that have little or no 
electromagnetic signature at all. Such 
astrophysical systems and phenomena include 
the birth of neutron stars (NSs) or the 
collapse of evolved massive stars into black 
holes (BHs), the coalescence of compact3 
binary systems, gamma-ray bursts (GRBs, 
[41]), active galactic nuclei harboring 
supermassive black holes, pulsars, and quasi-
periodically oscillating NSs (QPOs). 

Of those phenomena, GRBs, intense 
narrowly-beamed flashes of gamma rays of 
cosmological origin, are among the most 
scientifically interesting, and the riddle 
concerning their central engines and emission 
mechanisms is one of the most complex and 
challenging problems of astrophysics today. 
GRBs last between 0.5 to 1000 s, with a 
bimodal distribution of durations [34], 
indicating two distinct classes of mechanisms 
and central engines, one known as short-hard 
(duration less than 2 s) and the other known 
as long-soft (duration 2 to 1000 s). 

Hypotheses regarding these classes exist, 
and while observations are aiding our 
theoretical understanding, much that is said 
about the GRB central engine will remain 
speculation until it is possible to generate 

                                                 
3 The term “compact” refers to the compact-
stellar nature of the binary members in such 
systems: white dwarfs, neutron stars, black holes. 

self-consistent models of the following: (a) 
the processes that lead to the formation of the 
GRB central engine and (b) the way the 
central engine utilizes gravitational 
(accretion) and rotational energy to launch 
the GRB jet via magnetic stresses and/or 
polar neutrino pair-annihilation processes. 
The physics necessary in such a model 
includes general relativity, relativistic 

magneto-hydrodynamics, nuclear physics 
(describing nuclear reactions and the equation 
of state for dense matter), neutrino physics 
(weak interactions), and neutrino and photon 
radiation transport. In addition, it is necessary 
to adequately resolve physical processes with 
characteristic scales from about 100 meters 
near the central engine to about 5 to 10 
million kilometers, the approximate radius of 
the collapsar progenitor star. 

Any comprehensive approach to GRBs 
must naturally draw upon techniques and 
tools both from numerical relativity and from 
the theory of core-collapse supernovae and 
neutron stars. Furthermore, both areas have 
had dramatic progress in the past decade. In 
numerical relativity, immense improvements 
in the long-term stability of 3D GR vacuum 
and hydrodynamic evolutions (e.g., [1, 38]) 
allow, for the first time, calculations for long-
term stable binary black hole merger, binary 
neutron star merger, and neutron star and 
evolved massive star collapse. For its part, 
Supernova theory has made giant leaps from 

It is necessary to adequately 
resolve physical processes with 
characteristic scales from about 

100 meters near the central engine 
to about 5 to 10 million kilometers, 

the approximate radius of the 
collapsar progenitor star. 
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spherically symmetric (1D) models with 
approximate neutrino radiation transport of 
the early 1990s to Newtonian or approximate-
GR to 2D and the first 3D [18] calculations. 
Those calculations address detailed neutrino 
and nuclear physics and energy-dependent 
multi-species Boltzmann neutrino transport 
[6], neutrino flux-limited diffusion [7], and 
magneto-hydrodynamics [8]. 

This modeling cannot be fully realized on 
present-day computers. By computing at 
multiple sustained petaflops of performance, 
however, we would be able to tackle the full 
GRB problem and build complete numerical 

models whose output could be compared with 
observations. Current terascale codes, such as 
the spacetime evolution code Ccatie and the 
GR hydrodynamics code Whisky, can be and 
have been applied to the realistic modeling of 
the inspiral and merger phase of NS–NS and 
NS-BH binaries, the collapse of polytropic 
(cold) supermassive NSs, and the collapse 
and early post-bounce phase of a core-
collapse supernova or a collapsar. As the 
codes are upgraded and readied for petascale 
applications, the remaining physics modules 
will be developed and integrated. At that 
time, energy-dependent neutrino transport 
and magneto-hydrodynamics, both likely to 
be crucial to the GRB central engine, will be 

given high priority. 

To estimate roughly the requirements for 
a full collapsar-type GRB calculation, we 
assume a Berger-Oliger-type [4] adaptive-
mesh refinement setup with 16 refinement 
levels, resolving features with a resolution 
from 10,000 km down to 100 m across a 
domain of 5 million cubic km. To simplify, 
we assume that each level of refinement has 
twice the resolution as the previous level and 
covers approximately half the domain. Taking 
a base grid size of 1024 and 512 3D grid 
functions, and storing the curvature and 
radiation-hydrodynamics data on each level, 
we estimate a total memory consumption of 
about 0.0625 PB (64 TB). We compute the 
number of time steps that are necessary to 
evolve for 100 s in physical time by assuming 
a time step that is half the light-crossing time 
of each grid cell on each individual level. 
Therefore, the base grid has to be evolved for 
about 6000 time steps, while the finest grid 
will have to be evolved for 215 steps, which is 
a total of (216-1) × 6000 updates of the 10243 
points. Current best practice codes require 
approximately 10K FLOPs per grid point per 
time step. When we assume that additional 
physics (neutrino and photon radiation 
transport and magnetic fields, some of which 
may be evolved with different and varying 
time-step sizes) requires, on average, an 
additional 22K FLOPs, one time step of one 
refinement level requires 50 TFLOPs.  

 Summing up over all levels and time 
steps, we arrive at a total of about 18 million 

   This modeling cannot yet be 
fully realized on present-day 

computers.  Computing at multiple 
sustained petaflops of 

performance will allow us to 
tackle the full GBR problem and 

provide complete numerical 
models whose output can be 
compared with observations. 

Summing up over all levels and 
time steps, we arrive at a total of 
about 18 million PFLOPs needed 
to run a single simulation.  On a 

machine with 2 PFLOPS 
sustained, this will take about 100 

days, using the full machine. 
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PFLOPs needed to run a single simulation. 
On a machine with 2 PFLOPS sustained, this 
will take about 100 days, using the full 
machine, and assuming that no faults occur 
and no other jobs need to use the system. For 
this reason, GRBs pose a true petascale 
problem. 

2.9 Virtual Product Design for 

Manufacturing Industries 

Engineering innovation in almost every 
discipline has been revolutionized through 
the use of virtual models to replace the 
construction and testing of expensive 
prototypes, leading to dramatic cost 
reductions and reduced design cycle times, 
and resulting in more competitive designs. 
Historically, engineering product 
development in areas as diverse as aircraft 
aerodynamics, automotive crash simulation, 
nuclear reactor core analysis, and 
semiconductor design has been an important 
driver of CS&E, as well as HPC technology. 
However, recent studies have revealed that, 
apart from a select group of industries and/or 
organizations, the adoption of advanced 
CS&E technology has essentially stagnated 
in most engineering disciplines [24, 66]. For 
example, in aerospace engineering, 
computational fluid dynamics has progressed 
over the last 30 years from simple panel 
methods in the 1970’s to Reynolds averaged 
Navier-Stokes models in the 1990’s, but it 
has not embraced more complex and 
expensive large-eddy simulations or other 
multi-physics simulations. Instead, the 
discipline has chosen to reduce the cost of a 
fixed-simulation capability rather than to 
explore the potential of higher fidelity 
simulations on leading-edge hardware [33]. 
In most cases across diverse application 
areas, component-level analysis involving 
single-physics simulations on commodity 

hardware represents the state of the practice. 
Since foreign industrial competitors are 
investing aggressively in advanced CS&E 
methodologies, these findings carry 
important implications for national 
competitiveness [66]. 

An aggressive insertion/adoption of 
CS&E methods into the product development 
cycle, including approaches such as 
comprehensive high-fidelity multiphysics 
simulations, numerical optimization for non-
intuitive and better designs, and uncertainty 

quantification for reliable and certifiable 
product design, constitutes a Grand 
Challenge that offers the potential for large 
gains in efficiency, cost reduction, and 
overall competitiveness. Common barriers to 
increased industrial adoption of high 
performance CS&E include the lack of 
effective simulation software, overall 
software and hardware costs, lack of suitable 
manpower and demonstration of provably 

An aggressive insertion/adoption 
of CS&E methods into the product 

development cycle, including 
approaches such as 

comprehensive high-fidelity 
multiphysics simulations, 

numerical optimization for non-
intuitive and better designs, and 

uncertainty quantification for 
reliable and certifiable product 

design, constitutes a Grand 
Challenge that offers the potential 

for revolutionary gains in 
efficiency, cost reduction, and 

overall competitiveness. 
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beneficial return on investment in the short 
term. A Grand Challenge in virtual physics-
based product development can serve to 
illustrate the potential of leading-edge CS&E 
in the product development cycle, while at 
the same time serving to advance the 
development of new enabling techniques and 
software targeted at emerging exascale 
hardware.  

2.9.1 Turbomachinery Engine Design:  
As an example, in the aerospace industry, 
current aircraft turbofan engine design relies 
heavily on zero dimensional cycle models 
with maps that represent the different engine 
components, such as compressor, turbine or 
combustor.  These components themselves 
are traditionally designed with low 
dimensional models, although more recently 
three-dimensional steady-state Reynolds-
averaged Navier-Stokes computational fluid 
dynamics simulations have been used at the 

component level. High fidelity unsteady 
component simulations are currently pushing 
the state of the art largely due to the 
geometrical and physical complexity present 
even at the component level. For example, a 
full compressor or turbine simulation may 
contain 10 to 30 rows of fixed and rotating 

blades with up to 100 blades or more per 
row. Current day simulations of these types 
of configurations using on the order of 100 
million grid points, with sliding grid 
interfaces, and fully implicit time-stepping 
strategies, can be run on several thousand 
processors requiring on the order of 1015 

flops and 1012 bytes of memory. However, 
the incorporation of higher resolution and 
additional physics, made possible with the 
advent of petaflops and exaflops capabilities, 
will result in dramatic advances in simulation 
predictive capability. For example, because 
turbine blade operating temperatures are 
directly linked to failure rates (i.e., a 20oC 
rise in blade temperature corresponds to a 
50% reduction in blade life), the simulation 
of cooling flows and associated conjugate 
heat transfer from first principles will have a 
dramatic effect on engine component 
performance predictions. 

A typical high pressure turbine blade can 
contain up to 400 cooling holes and it has 
been estimated that 1 million grid points are 

The combination of multiphysics 
turbine simulations with a full 

unsteady compressor simulation 
and a large turbulence eddy 
resolving simulation of the 

combustor, including fuel spray 
and complex combustion 

chemistry, will clearly require 
exaflop level resources.   

Figure 5: High fidelity simulation of helicopter rotor dynamics.  Simulation 
includes a rotating unstructured mesh fixed to the blades and hub and a fixed 
Cartesian mesh in the off-body region where a high (6th) order accurate 
discretization adaptive mesh refinement strategy is used for accurately 
capturing the wake vortices.  The overlap and interpolation patterns between 
fixed and rotating meshes are recomputed in parallel at each time step. 
Reproduced from [67]. 
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required to simulate a single cooling hole 
flow to sufficient accuracy for conjugate heat 
transfer predictions.  Simply based on the 
number of rows and blades per row, this 
would translate into over 1012 grid points or 
more than a factor of 1000 increase in 
required resolution, putting such a simulation 
clearly in the petaflops range, requiring a 
total of 1018 flops and 1015 bytes of memory.  
The combination of multiphysics turbine 
simulations with a full unsteady compressor 
simulation and a large turbulence eddy 
resolving simulation of the combustor, 
including fuel spray and complex combustion 
chemistry, will clearly require exaflop level 
resources. However, new frontiers in product 
design and reliability will be enabled through 
the availability of such simulations especially 
when used in design optimization loops, and 
for managing manufacturing uncertainties to 
provide reliable estimates of fleet engine 
performance or life cycle wear and predictive 
performance degradation. 

2.9.2 Wind Engineering: Wind energy 
represents an area that has seen aggressive 
use of CS&E since its inception. Current 
leading-edge high-fidelity wind turbine 
aerodynamics simulations can be achieved 
using on the order of 100 million grid points, 
with overlapping or sliding mesh interfaces, 
and implicit time-stepping procedures, 
usually limited to time steps corresponding to 
less than 1 degree of revolution, due to 
temporal accuracy limitations. Total 
computational requirements for such 
simulations, assuming the simulation of ten 
complete revolutions, can be estimated to be 
of the order of 1015 flops and 1012 bytes of 
memory. However, large eddy turbulence 
resolving simulations including blade 
transition effects, geographic terrain effects 
and atmospheric turbulent boundary layer 
interactions can be expected to require at 
least one to two orders of magnitude more 

resolution in space and time, putting such 
simulations clearly in the petaflops range. 
Simulating interference effects between 
turbines will require the inclusion of adaptive 
mesh refinement techniques and/or higher-
order methods to capture and preserve wake 
and vortex effects over long distances. The 
simulation of arrays of turbines (for example 
a dozen closely spaced  turbines) with terrain 
and atmospheric turbulence effects can thus 
be expected to require of the order of 1021 
flops and 1015 bytes of memory.  
Furthermore, design optimization using these 
types of simulations and uncertainty 
quantification, due both to extreme 
atmospheric events and manufacturing 
variability, can be expected to add another 
one to two orders of magnitude in 
computational requirements.  

2.9.3 Virtual Flight Testing: In 
aerospace engineering, complete aircraft 
steady-state aerodynamic analyses are now 
commonplace, as well as linear structural 
analysis of complex structures. The next 
logical step involves the adoption of time-
dependent large-eddy simulations for 
aerodynamics, time-dependent non-linear 
structural analysis, and the coupling of these 
two disciplines for dynamic aeroelasticity. 
Furthermore, aeroacoustics and propulsion 
disciplines (and aerothermal in the case of 
hypersonic vehicles) need to be integrated 
into the simulation process, as well as 
simulation of the flight control system, in 
order to enable controlled virtual flight 
simulations. Numerical optimization 
techniques can then be devised to explore 
optimal configurations and to design flight 
system control laws with specified handling 
characteristics. Finally, the design process 
will require the simulation of the complete 
flight envelope, including cruise conditions, 
extreme conditions, and unanticipated 
emergency conditions. Building the complete 
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flight-envelope data-base involves hundreds 
of thousands of individual conditions and is 
currently achieved through a combination of 
expensive wind-tunnel testing and flight 
testing. The ultimate long term goal should 
be digital airworthiness certification. 

All of these virtual product design Grand 
Challenges share many of the same 
requirements and obstacles as the other 

Grand Challenges described in this report. 
However, there are some particular issues 
that are specific to product design Grand 
Challenges. For example, the use of ever 
increasing spatial resolution is often not the 
best path forward for increased simulation 
outcomes in many virtual design problems. 
Often, the extension of steady-state 
simulations to time-dependent problems, 
and/or the incorporation of additional tightly 
coupled physics represent the critical 
elements required for increased simulation 
effectiveness. Additionally, the natural 
progression from conceptual to detail design 
must rely on a hierarchy of low-to-high 
fidelity models, all of which must work 

together to provide the most optimal and 
reliable final design. Finally, because product 
design is a time critical exercise, there is a 
limit on acceptable simulation turnaround 
time (often taken as 24 hours) to be useful in 
the design cycle. These aspects make the 
development of enabling analysis and 
optimization algorithms that scale effectively 
to the exascale particularly challenging. 
However, these problems are so complex that 
exascale resources will be required in order 
to realize the full potential of CS&E in the 
product design cycle. 

A physics-based virtual product Grand 
Challenge will provide a catalyst for focusing 
resources on the development of 
computational methods, implementations, 
and software that enable higher fidelity 
simulations, tight coupling of disparate 
physics, effective optimization strategies, and 
novel uncertainty quantification methods 
targeting risk reduction, reliability, virtual 
certification, and complete life-cycle 
assessment. In addition, the Grand Challenge 
will demonstrate the potential for 
accelerating engineering innovation and will 
provide the basis for reliable software that 
can be deployed cost-effectively across a 
range of hardware scales. 

2.10 High-Temperature 

Superconductor Material Design  

Superconductivity—the ability of some 
materials to conduct electricity without 
resistance—was discovered nearly a century 
ago in materials such as mercury and 
niobium-titanium alloys.  The potential 
applications of superconductivity are 
innumerable—with revolutionary advances 
possible in such areas as power generation 
and transmission, grid technology, and high-
speed levitating trains.  However, these 
materials must be cooled to well below 20 K 

   Because product design is a 
time critical exercise, there is a 
limit on acceptable simulation 
turnaround time, making the 

development of enabling analysis 
and optimization algorithms that 
scale effectively to the exascale 
particularly challenging. These 
problems are so complex that 

exascale resources will be 
required in order to realize the full 
potential of CS&E in the product 

design cycle.    
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(or -400°F) before they make the transition to 
the superconducting state; for this reason, 
they are known as low-temperature 
superconductors (LTSCs). So-called high-
temperature superconductors (HTSCs), 
discovered a little more than two decades 
ago, require far less cooling; some copper-
oxide materials, known as cuprates (an 
example is shown in Figure 6), are 
superconducting at temperatures above 77 K 
(or -320°F) – which is very significant, since 
77K is the boiling point of the relatively 
cheap coolant, nitrogen. HTSCs are much 
more complex than LTSCs: examples of 
cuprate and the recently discovered (2008) 
iron-based HTSCs are YBa2Cu3O7 and 
CeFeAsO respectively.  

 Understanding the fundamental origins 
of HTSC behavior has been a theoretical 
challenge since the discovery of HTSCs. 
Recently, a relatively simple model that 
provides a coarse-grained description of the 
electrons in a cuprate’s copper-oxide layers – 
the Hubbard model – has provided new 
insights into HTSCs. Despite its coarse-
grained nature, the simulation of the Hubbard 

model, in common with the simulation of 
correlated electron systems in general, is 
computationally intensive. For example, the 
landmark simulations of the Hubbard model 
by a group of Oak Ridge National Laboratory 
researchers that showed that the model could 
predict HTSC successfully and delineate its 
fundamental mechanisms won the 2008 
Gordon Bell prize for highest-performing 
sustained scientific computation (1.352 
petaflops). However, by virtue of its coarse-
grained nature, the Hubbard model does not 
reflect atomic composition or structure, and 
thus cannot predict the superconducting 
transition temperature of a specific material. 
In order to do this – i.e., material-specific 
modeling of HTSC candidates – the single-
orbital Hubbard model needs to be turned 
into a multi-orbital model, significantly 
increasing the computational complexity, 
since for these calculations problem size 
grows exponentially with the size of the 
system. In addition, the robust extraction of 
parameter-free materials-specific multi-
orbital models from first principles electronic 
structure calculations – a process called 
down-folding – requires peta-scale 
simulations in itself. The merger of these two 
programs and its embedding into an overall 
design methodology will result in simulations 
in need of exascale infrastructure. 
 Hence, materials-specific HTSC 
simulations are exascale-level computational 
grand challenges, which must be addressed if 
we are to reach the point of designing new 
HTSC materials.  Imagine the impact on 
society of new HTSCs incorporated into 
HTSC cables that would enable resistance-
less transmission of electricity around the 
U.S. and around the world: areas of the U.S. 
(or the world) that are rich in sunlight (e.g., 
deserts) could be home to massive solar 
energy conversion farms that powered the 
rest of the U.S. (or other parts of the world).  
HTSCs would make possible the widespread 

Figure 6: The high-Tc superconductor YBa2Cu3O7.  Atoms are 
rendered as follows: O – red; Cu – copper; Ba – green; Y – pruple. 
Image courtesy of Jeremy Meredith, Oak Ridge National Laboratory. 
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and cost-effective use of magnetically 
levitated (maglev) personal vehicles. 

2.11 Common Themes to the  

Grand Challenges 

A review of the problems typifying the 
Grand Challenges reveals a number of 
common themes. The following identifies 
those with clear impact on computational 
science and engineering. 

• All Grand Challenges face barriers in the 
areas of software, data management, and 
visualization, and the coordination of the 
work of diverse communities that 
combine efforts and resources to develop 
models and algorithms and to evaluate the 
outputs.  

• All Grand Challenges require 
transformative discovery and innovation, 
which in turn demand capabilities 
approaching or exceeding exascale 
computing. Computing at this scale 
requires dramatic changes in processor 
architecture and power management. 

• All Grand Challenges need advanced 
computational models and algorithms, 
including methods that are informed by 
observational data in a way that can cope 
with uncertainty in the data and that can 
quantify uncertainties in predictions. New 
methods are necessary to facilitate 

multiscale modeling, enhanced sampling, 
and vast simulations while integrating 
high data volume outputs of the 
simulations along with new methods to 
encourage the publication of code and 
data to facilitate verification of 
computational results.  

• Significantly, all Grand Challenges must 
have the ability to acquire relevant data 
for calibration and validation of large-
scale computational models and to 
characterize and quantify uncertainties. 
This ability depends on the development 
of statistical representations of data on 
parameters and observations, statistical 
inverse methods, and software that 
implements them. It depends also on 
methods to resolve the large stochastic 
systems that result from model and data 
uncertainties. The transition of 
conventional deterministic methods and 
models of complex physical events to 
those accounting for uncertainties and 
stochasticity will increase by several 
orders of magnitude the size, complexity, 
and computational work needed for 
predictive simulations.  

• All Grand Challenge problems call for the 
development – in some combination - of 
computational models based on scientific 
and engineering principles, on the 
principles and methods of computer 
science, and on computing technology 
and the use of core computational and 
applied mathematics. The advance of that 
combination of disciplines defines the 
purpose of Cyber Science and 
Engineering (CS&E): the discipline 
bringing together computational science 
and engineering as they can be exploited 
via the cyberinfrastructure. 

Although NSF has supported many cross-
directorate initiatives in basic CS&E over the 

The transition of conventional 
deterministic methods and models of 

complex physical events to those 
accounting for uncertainties and 

stochasticity will increase by several 
orders of magnitude the size, 

complexity, and computational work 
needed for predictive simulations. 
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years, there has been no home for it within 
the NSF organizational structure. As a result, 
efforts in CS&E have been fitful: 
underfunded programs, low-proposal success 
rates, and no sustainability for efforts 
requiring long-term investments in software 
and algorithm development and 
infrastructure. Under those conditions, an 
effective attack on Grand Challenges is 
extremely difficult.  

 It is clear that important discipline-
specific programs in computational science 
and engineering are vital to advancements in 
every discipline, and such problems must be 
encouraged and supported at NSF. But 
mechanisms should also be created for 
sustained support of CS&E across multiple 
disciplines (and directorates), for 
interdisciplinary work is an essential attribute 
of all Grand Challenge efforts. Also, the best 
work in CS&E will be built on a foundation 
of solid applied mathematics and computer 
science not always in the scope of discipline-
specific approaches, while, conversely, core 
mathematical and computer science, by 
themselves, do not generally fit the needs of 
Grand Challenge projects.  The distinction is 
often that new mathematics and computer 
science must be developed to resolve specific 
barriers to progress on Grand Challenge 
problems, and these developments are rarely 
anticipated as relevant topics for 
mathematical or computer  research. 
  

These considerations suggest that the 
Foundation would be best served in the broad 
area of CS&E if it developed policy and 
structures that support directorate-specific 
activities in CS&E, on the one hand, and, on 

the other hand, that support Foundation-wide 
initiatives that involve multiple disciplines. 
Those latter initiatives will always be needed 
for addressing legitimate Grand Challenge 
problems.  

These considerations suggest that 
the Foundation would be best served 

in the broad area of CS& E if it 
developed policy and structures that 
support directorate-specific activities 
in CS&E, on the one hand, and, on the 
other hand, that support Foundation-
wide initiatives that involve multiple 

disciplines. These latter initiatives will 
always be needed for addressing 

legitimate Grand Challenge problems. 
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3.0 ADVANCED COMPUTATIONAL 
METHODS & ALGORITHMS 

 

 

3.1 Introduction 
Computational methods and algorithms 

have played a crucial role in the solution of 
complex scientific and engineering problems 
since the earliest days of computing. They 
form the key link between mathematical 

models of physical phenomena of interest 
and high performance software that can be 
used to carry out analysis and prediction of 
the behavior of complex physical systems. 
Synergistic advances in computing and 
computational methods have stimulated 
scientific and engineering breakthroughs, 
which have in turn motivated further 
advances in enabling technologies. Over the 
past half-century, advances in computational 
methods have led to speedups in the solution 
of important scientific problems that are as 
significant as those resulting from advances 
in the hardware alone. For example, Figures 
7-10 illustrate breakthroughs on scientific 
problems that have been enabled by advances 
in algorithms.  

Computational methods, however, are 
often taken for granted due to past successes 
and their largely hidden role in powering 
CS&E software. But while recent isolated 
successes have occurred, computational 
methods that can scale to petascale systems 
are still in their infancy for difficult 
problems, such as those with strong 
heterogeneities and anisotropies, 
multiphysics couplings, multiscale/multirate 
behaviors, stochastic forcing, uncertain 
parameters, dynamically evolving 

3 Advanced Computational 
Methods & Algorithms 

There is no question that 
building an exascale machine 
is hard; but using it effectively 

to solve CS&E Grand 
Challenge problems is an even 

harder goal. 

Figure 7: Direct numerical simulation of blood flow, using a complex fluid 
model that resolves dynamical interactions between deformable cells and 
surrounding fluid plasma are instrumental to gaining a better understanding of 
hemodynamic phenomena. The computational challenges associated with 
such microstructural simulations of blood flow are immense: modeling just one 
microliter of blood, with over four million cells, results in more than a trillion 
space-time variables. Work at Georgia Tech and New York University (led by 
George Biros and Denis Zorin and supported by an NSF PetaApps project) 
aims to overcome these challenges using new parallel kernel-independent 
fast multipole methods. The project has developed new parallel algorithms 
and hybrid OpenMP/MPI implementations that have enabled scalability to 
200,000 cores on a Cray XT5 while achieving 0.7 PFlops/s of sustained 
performance.  
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geometries, continuum-atomistic couplings, 
large-scale combinatorial structure, and so 
on. But it is precisely these features that 
characterize next-generation Grand 
Challenge problems.  

Absent a systematic research effort, 
continued progress on frontier CS&E 
problems is not assured, and federal 
investments in hardware, networking, and 
software will be jeopardized. Let there be not 
doubt: building an exascale machine will be 
hard; but using it effectively to solve CS&E 
Grand Challenge problems will be even 
harder. 

To address the difficulties in developing 
computational methods for scientific Grand 

Challenges such as those described in 
Chapter 2, a broad-based, comprehensive, 
long-term, and vigorous research program in 
advanced computational methods must be 
established to overcome the challenges faced 
in devising, analyzing, scaling up, and 
applying new methods for critical CS&E 
problems on advanced computing systems. 
As noted earlier, this program should support 
multidisciplinary and interdisciplinary teams 
that bring together applied mathematicians, 
computer scientists, and computational 
scientists and engineers. In turn, an 
additional CI challenge is to ensure that 
advances in computational methods and 
algorithms developed in one discipline are 
disseminated across all disciplines that face 
computational problems with similar 
structure.  

Computational methods and algorithms 
play a key role at all stages of CS&E, 

Figure 8: Simulation of blood flow in a patient-specific abdominal aortic 
aneurysm (AAA) model. The complexity of the geometry and physics dictates 
the use of adapted anisotropic unstructured AAA meshes. This presents the 
challenge of developing implicit methods for solving the Navier Stokes 
equations that scale to petascale systems. Research at RPI led by Kenneth 
Jansen and Mark Shephard and supported by an NSF PetaApps project has 
resulted in strong scaling of the PHASTA finite element flow code on a 5 
billion element mesh to nearly 300,000 IBM Blue Gene/P cores with 95% 
efficiency. Such simulations have the potential to revolutionize planning of 
surgical procedures.  

Figure 9: In another NSF PetaApps project, a team of applied 
mathematicians and computational physicists led by Thomas Manteuffel 
and Stephen McCormick (CU Boulder), James Brannick  (Penn State), and 
Richard Brower and Claudio Rebbi (Boston University) is developing 
advanced multigrid algorithms for the Dirac inversion problem of lattice 
quantum chromodynamics (QCD). The log plot above compares a new 
adaptive multigrid preconditioned Generalized Conjugate Residual 
algorithm with a conventional QCD solver (red/black preconditioned CG) in 
terms of the floating point operations needed to solve the Wilson-Dirac 
system on a 32 X 32 X 32 X 96 lattice for various quark masses.  
Production parallel multigrid codes are now showing an order of magnitude 
speed up, nearly eliminating the problem of critical slowing down at small 
quark mass, which plagued all previous solvers in lattice QCD. 
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including solution techniques for complex 
multiscale/multiphysics problems, advanced 
spatial and temporal discretization schemes 
for high fidelity simulations, scalable 
algorithms for solution of large linear and 
nonlinear algebraic systems and eigenvalue 
problems, methods for quantifying 
uncertainties in large-scale simulations, and 
algorithms for solution of large-scale 
optimization problems arising in design, 
control, and inversion. In this section, we 
summarize research issues in advanced 
computational methods that must be 
addressed to enable solution of frontier 
science and engineering Grand Challenge 
problems using next generation computing 
systems.  

3.2 Simulation of Complex 

Multiscale, Multiphysics, Multi-
model Systems 

Science and engineering are increasingly 
concerned with the study of multiscale, 
multiphysics systems that intimately couple 
different phenomena occurring at different 

spatial and temporal scales and 
governed by different physical 
laws. Such systems can arise in 
a variety of ways. For example, 
systems may involve a single 
physical process that must be 
modeled using a multiscale 
approach. The approach couples 
several descriptions of the 
process valid at different scales, 
for example, deterministic and 
stochastic. Other systems 
involve the coupling of multiple 
physical processes described by 
different models. Examples 
include: modeling the transport 
of pollutants in ground water, 
which couples the simulation of 

multiple fluid phases, geomechanics, and a 
complex set of biogeochemical reactions; 
simulating a fusion reactor, which involves 

fluid dynamics, deformation of solid 
materials, thermal effects, ablation, fracture, 
corrosion and aging of materials, and 
radiation; and simulation of climate systems, 
which couples atmosphere, ocean, land 
surface, and sea/land ice models. Complex 
engineered systems constitute yet another 
class of examples. For instance, models of a 
regional power grid involve a mixture of a 
large number of continuous and integer 

Science and engineering are 
increasingly concerned with 

the study of multiscale, 
multiphysics systems that 
intimately couple different 

events occurring at different 
scales and governed by 
different physical laws. 

Figure 10: Portion of an adaptively refined mesh from a global mantle convection simulation 
with refinement both around plate boundaries and dynamically in response to the nonlinear 
viscosity, with plastic failure in the region from the New Hebrides to Tonga in the SW Pacific. 
The mesh contains elements on 7 different refinement levels globally with a finest resolution of 
about 1 km. The key algorithmic challenge is to overcome the difficulty of adapting meshes in 
parallel on the petascale supercomputers necessary for these simulations. A team led by 
Omar Ghattas (UT-Austin) and Michael Gurnis (Caltech) has developed parallel AMR 
algorithms that scale to over 200,000 cores, adapt to complex geometries, and deliver high 
order accuracy. These new algorithms have resulted in a factor of 5000 reduction in problem 
size, making tractable the global mantle convection simulations on TACC’s Ranger illustrated 
above, and leading to new insights into the dynamics of plate boundaries.  
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variables encompassing a wide range of 
scales coupled through descriptions that 
include various nonlinear dependencies and 
constraints. 

Generically, multiscale, multiphysics 
systems present significant challenges for 
numerical simulation. It is rarely possible to 
simulate a complex system to such a degree 
that behavior is resolved uniformly at the 
finest scale; such systems exhibit complex 
stability properties resulting from a fusion of 
the stability properties of component physics, 
and the linkage between physical components 
has a strong impact on the model behavior. At 
the same time, accurate simulation of 
multiscale, multiphysics systems presents a 
challenge for high performance computing 
because existing paradigms for efficient use 
of high performance platforms for single 
physics models are inadequate for treating 
multiphysics systems. Thus, the challenge of 
faithfully simulating a system that 
encompasses a wide range of scales and 
physical processes requires the development 
of new computational algorithms that provide 
robust accuracy in a multiphysics, multiscale 
context yet scale to the millions of processor 
cores that characterize future multi-petaflop 
and exaflop systems. 

3.3 Advanced Discretization 

Methods for Partial Differential 
Equations 

In many areas of computational science 
and engineering, increasing attention is being 

devoted to advanced or special discretization 
methods. These methods yield much higher 
fidelity to the detailed physical description 
than is possible with traditional discretization 
methods. In these applications, standard 
discretization methods either miss important 
physical properties or achieve them at great 
inefficiency, even at the highest possible 
resolutions.  

Examples of applications requiring 
advanced discretization methods abound. 
Discontinuous Galerkin (dG) finite element 
methods, smoothed particle hydrodynamics 
(SPH) methods, and hp-adaptive finite 
element methods that allow for locally high 
order discretization yet provide great 
flexibility in local element and discretization 

geometry are increasingly used for 
applications where the geometry of the 
physical domain is complicated or multiscale. 
Likewise, specialized methods for treating 
problems with dynamic interfaces and free 
boundaries are undergoing rapid 
development. Integral equation-based 
discretizations are increasingly deployed, 
motivated by advances in fast multipole 
methods for rapid evaluation of the relevant 
kernels. Many problems in science and 
engineering, for example, ranging from the 
modeling of black holes to the modeling of 
DNA and protein molecules to the study of 

Increasing attention is 
devoted to advanced or 

special discretization 
methods that yield much 

higher fidelity to the detailed 
physical description than is 

possible with traditional 
discretization methods. 

A central challenge in the 
development of these advanced 

discretization methods is to 
ensure that they map well onto 

forthcoming multi-petaflops and 
exaflops systems.  
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the propagation of nerve impulses, involve 
the evolution of physical phenomena on 
complex domains and manifolds. In these 
situations, the geometry of the domain is a 
critical consideration in the construction of 
good numerical methods. Motivated 
originally by the solution of Maxwell's 
equations, interest has intensified recently in 
the systematic study and use of compatible 
spatial discretization methods that inherit or 
mimic fundamental properties of the model, 
such as topology, conservation, symmetries, 
and positivity structures and maximum 
principles. These issues are also important in 
time discretization for evolution problems. 
So-called multirate integration methods that 
allow for different time steps for different 
components or over different regions of space 
are very important, for example, in reacting 
flow simulations, solid state circuit 
simulation, and biochemical network 
simulation. Geometric integrators that 
preserve properties such as a Hamiltonian 
structure are extremely important for 
simulations involving long times, such as the 
construction of trajectories for space vehicles.  

In addition to discretization of the 
governing continuous equations, 
discretization of the geometry is a critical 
issue. In cases where the domain is simple, it 
is easy to generate uniform meshes of well-
shaped elements. The generation of such 
meshes for geometrically complex 3-D 
domains, combined with anisotropic physics, 
can ultimately dominate the overall run time 
of the simulation. In addition, such meshes 
may yield much larger systems of algebraic 
equations than more optimal mesh 
configurations.  An alternative is fully 
automatic unstructured mesh generation that 
can interact with CAD (solid model) 
representations to generate and adapt the 
more optimally configured meshes over 
general domains. However, these meshes 
require more complex data representations 

and can yield more poorly conditioned 
algebraic systems when not carefully 
controlled and/or combined with appropriate 
equation discretization methods (e.g., 
stabilized methods). The application of high 
order equation discretization techniques 
requires the use of curved meshes for 
problems with curved boundaries, adding 
substantial additional complexity to the mesh 
generation process. 

Although substantial progress has been 
made in the areas of structured and 
unstructured mesh generation, there are a 
number of critical areas requiring further 
development for parallel simulations. These 
include: generation and adaptive control of 
meshes that are matched to the equation 
discretization methods used, parallel 
generation of meshes of many billions of 
elements on massively parallel computers, 
effective dynamic partitioning of adaptively 

defined unstructured meshes, and methods 
for the representation and generation of 
properly controlled curved meshes for use 
with higher order methods, including 
consideration of the interactions of the mesh 
generator with the geometric model 
representation. 

It is essential, however, as the Grand 
Challenge problems become increasingly 
complex, that the continued development of 
advanced discretization methods honors the 
underlying physics. Simultaneously, we must 

Linear solvers constitute a 
critical component of modern 
implicit scientific simulation 

codes and are often the barrier 
to scalability on massively 

parallel systems. 



 30

ensure that they map well onto forthcoming 
multi-petaflop and exaflop systems.  

3.4 Scalable Solvers 
Solvers constitute a critical component of 

modern implicit scientific simulation codes 
and are often the barrier to scalability on 
massively parallel systems. Large, structured, 
linear and nonlinear algebraic systems and 
algebraic eigenvalue problems arise after 
discretization of complex engineering and 
scientific models. Overall scalability of a 
solver is the product of algorithmic scalability 
(work required as a function of problem size) 
and implementation scalability (which 
depends on having a large computation-to-
communication ratio). It is often the case that 
large-scale scientific simulation codes spend 
the majority of their time in the linear solver 
phase, because other components usually 
scale linearly with problem size and require 
nearest-neighbor communication, while the 
solver typically scales superlinearly and 
involves global communication. Naive 
solvers can scale quadratically (or worse), 
rendering them unsuitable for the weak 
scaling required to capitalize on increasing 
numbers of processors. 

In principle, linear solvers are capable of 
scaling well on parallel systems: for elliptic-
dominated problems (and for parabolic, 
which resemble elliptic after time 
discretization), the Green's functions decay 
exponentially and hence effective 
preconditioners that coarse-grain the global 
communication can be designed. For 
hyperbolic-dominated problems, the 
dependencies are local. Unfortunately, a 
number of features of emerging 
computational science problems provide 
serious impediments to the scalability of 
modern solvers. These include the presence of 
severe anisotropies and heterogeneities, 
multiphysics couplings, strong nonlinearities, 

dynamic mesh adaptivity, interface dynamics, 
mixed-order discretizations, and multiscale 
models. For such problems, algorithmic 
scalability is not at all ensured, and 
implementation scalability is questionable 
due to the dynamic load balancing and 
significant communication required. It is 
absolutely critical that these challenges be 
overcome in order to ensure continued 
progress on the next-generation Grand 
Challenge problems as exemplified by those 
described in Chapter 2. 

3.5 Algorithms for First Principles 

Models 
Models that represent First Principles 

descriptions of physical phenomena also 
present numerous computational challenges. 
Such models generally do not involve partial 
differential equations. A primary example is 
provided by molecular dynamics (MD). MD 
models involve solving equations of motion 
of particles in order to compute statistical 
information such as temporal and spatial 
ensemble averages. This general simulation 
technique allows for a statistical mechanics 
description of matter at finite temperatures 
and of open systems. For example, MD 
simulations have proven to be a useful bridge 
between microscopic modeling of 
(bio)molecules and properties at larger scales 
such as elasticity, conduction, and 
mechanical properties of biological 
assemblies. Significant computational 
challenges include: 

• Current computational capabilities limit 
the sampling to insufficient resolutions. 
The complexity and ruggedness of the 
energy landscape of molecular systems, 
with thousands to millions degrees of 
freedom, suggest that achieving complete 
sampling will remain difficult for the 
foreseeable future. Besides new 
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approaches to computing important 
statistics, rigorous tests of convergence of 
computed statistics and assessment of 
phase space coverage are desired for 
further progress in the field. 

 

• Current descriptions of force fields are not 
sufficiently accurate. As the scope of MD 
simulations increases to longer times and 
larger systems, we observe significant 
flaws in the current energy function 
descriptions, which are largely empirical. 
Even qualitative features are wrong, e.g., 
some proteins, that are  accessible to 
straightforward simulations do not fold 
while others fold too quickly, RNA 
molecules are computed to be unstable, 
and quantitative experimental data is hard 
to reproduce. 

 

• Hierarchical temporal and spatial coarse 
graining are necessary to overcome the 
gap between molecules and biological 
cells. We need algorithms that will help us 
choose the next set of variables in the 
(coarser) hierarchy, compute their 
effective interactions and assess the 
reliability of these models.  

In the biophysics field, these advances 
are necessary to expand our knowledge of 
large protein assembly and their cell 
functionalities. For example, studying 
microtubules—the most functional 
cytoskeletal filaments of the cell, requires 
modeling of the basic building block, the 
protein tubulin. Rigorous coarsening based 
on atomistic models is a promising direction 
to consistent computational models for 
cellular behavior with limited external 
parameters. 

3.6 Combinatorial and Discrete 

Problems 

 Combinatorial scientific computing (CSC) 

is the field in which researchers design graph 
and hypergraph solutions to solve 
combinatorial problems that arise for example 
in computational science and engineering 
information science, social networks, and 
bioinformatics, as well as create high 
performance software implementing these 
algorithms. CSC plays a critical enabling role 
in applications requiring parallelization, 
differential equations, optimization, eigenvalue 
computations, analysis of massive data sets, 
and so on. When large-scale problems demand 
increasing accuracy and fidelity, effective 
algorithms for solving combinatorial problems 
on emerging computing systems are needed. 

 Combinatorial problems have a number of 
features that present challenges in designing 
scalable parallel algorithms for their solution. 
The runtime of graph algorithms is dominated 
by communication costs and memory latency 
rather than processor speed. There is little 
work to do when processing the data at a 
vertex or an edge, and so computation cannot 
hide memory access costs. Since access 
patterns are determined by the structure of the 
input graph, prefetching techniques cannot be 
applied. Graph algorithms possess poor data 
locality, making it difficult to obtain good 
memory system performance. While 
concurrency is abundant, dependencies 
between computations at nodes or edges have 
to be satisfied, and these costs can limit the 
performance.  

 Several innovative ideas have been used to 
design scalable combinatorial algorithms. 
These include:  approximation, when 
algorithms with higher concurrency are 
available if the problem can be solved 
approximately rather than optimally; 
speculation, when dependent computations are 
performed concurrently on multiple 
processors, with roll-backs if conflicts are 
detected; randomization to reduce the 
necessity of synchronization of tasks; and 
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partitioning, mapping, and scheduling tasks to 
reduce communications and synchronization 
costs. However, a broad long-term research 
effort in the design of innovative algorithms in 
cooperation with research in exascale 
architectures and applications is vital for the 
solution of these exascale problems.  

 An example of a challenging 
combinatorial problem in exascale computing 
is dynamic load balancing for multi-scale, 
multi-physics problems. Here computations at 
multiple phases of the computation need to be 
mapped to processors in a way that balances 
the sum of the computations in the phases 
while reducing communication and 
synchronization costs. In adaptive 
computations, the collection of computational 
tasks changes from iteration to iteration, and 
the costs of data migration have to be included 
among the multiple objectives of balancing the 
load. At the exascale, the imbalances in each 
phase of the computation that could be 
tolerated at the tera-scale would impact 
performance adversely, and hence dynamic 
load balancing would be vital for good 
performance. Combinatorial problems also 
arise in enabling solvers for linear and 
nonlinear systems of equations. Domain 
decomposition requires graph partitioning, 
Algebraic Multigrid solvers use combinatorial 
methods in coarsening grids, and 
preconditioners based on incomplete 
factorizations rely on graph models of the 
factorization. Another key kernel here is an 
algorithm for computing sparse matrix-vector 
multiplications, and combinatorial analysis is 
needed to make the computation efficient for 
the memory system. Automatic Differentiation 
(AD) is a software methodology that can 
compute analytic derivatives of functions, 
represented by programs, both accurately and 
efficiently. AD relies on a computational graph 
representation to apply the chain rule to 
compute the needed derivatives, and this graph 
is transformed to reduce the operations and 

storage needed for the derivative 
computations. The computation of Jacobians 
and Hessians is feasible for large-scale 
problems only when the scarcity and 
symmetry available in the computations is 
exploited by graph coloring models to reduce 
the number of passes by computing several 
columns or rows of the matrix simultaneously. 
AD has applications in nonlinear differential 
equations when sensitivities of the solutions 
are required and in Uncertainty Quantification.  

3.7 Uncertainty Quantification  
Because complex systems are often 

inaccessible to experiment and direct 
observation, and building and testing 
prototypes are extremely expensive, there is 
often only a small set of observational data 
available for analysis and predictions of 
behavior. Hence, a fusion of observational 
and experimental data with computational 
modeling provides the only means to gain the 
required understanding of complex systems. 
Error and uncertainty in such cases arise in 
many ways, for example, in data and 
parameters measured by experiment and 
observation, from discretization, and from a 
lack of knowledge about the physical 
processes in the system. Moreover, they are 
represented in different ways, for example, 
statistically, probabilistically, and 
deterministically. As computational modeling 
has become a fundamental tool in the analysis 
and prediction of the behavior of complex 
systems in science and engineering, the need 
to quantify the effects of error and uncertainty 
has become critical. This is true on scientific 
grounds, but in addition, computational 
science is increasingly used to inform policy-
making or mitigation solutions where 
significant resources are at stake. For 
example, an understanding of predictive 
uncertainty plays an essential role in the 
political acceptance of the need to design 
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policies to address global warming when the 
cost of different policies varies by trillions of 
dollars. Policy and decision makers need 
analyses of complex systems that are 
supported by quantitative characterizations of 
error and uncertainty. 

In terms of computational costs, 
quantification of uncertainty and error 
estimates and control are tremendously 
expensive undertakings that raise entirely new 
sets of challenges for both mathematical 
algorithm development and high performance 
computing. The underpinnings are the 
problems of forward and inverse sensitivity 
analysis. Forward sensitivity analysis is 
concerned with how errors in data, 
parameters, and discretization propagate 

through a model to affect output. Inverse 
sensitivity analysis reverses the point of view 
to determine the allowable uncertainty in 
inputs to a model given a desired degree of 
uncertainty in the model output. This is an ill-
posed inverse problem that provides a 
powerful link between model results and 
experimental observation. Both types of 
problems involve determining how model 
output changes with changes in input and 
discretization. Whereas in the past one-time 
solutions of simple models might have 

sufficed for scientific investigation, both 
forward and inverse sensitivity analysis 
involves the simulation and analysis of model 
behavior for many sets of data/parameter 
values and discretizations. What are needed 
are entirely new classes of efficient and 
robust algorithms for sensitivity analysis and 
uncertainty quantification that can scale to 
very large numbers of parameters and 
expensive simulation models that can 
efficiently utilize the millions of processor 
cores that characterize future exaflop systems. 

3.8 Large-Scale Simulation-Based 

Optimization  
Advanced CI has the potential to enable a 

transformation from simulation to simulation-
based decision-making, which gives rise to 
complex optimization problems that include 
large-scale forward problems as constraints. 
Those optimization problems arise in design 
(in which the decision variables represent the 
configuration and constitution of the system) 
and in manufacturing and operations (in 
which the decision variables represent control 
parameters). Moreover, decision-making 
informed by predictive simulation requires 
estimation of uncertain parameters that 
characterize the simulation. The resulting 
inverse problems seek to estimate these 
parameters by minimizing discrepancy with 
observations. 

Unfortunately, the solution of simulation-
based optimization problems, whether in the 

Advanced cyberinfrastructure 
has the potential to enable a 

transformation from 
simulation to simulation-based 

decision-making. 

In terms of computational 
costs, quantification of 
uncertainty and error 

estimates and control are 
tremendously expensive 

undertakings that raise entirely 
new sets of challenges for 

both mathematical algorithm 
development and high 

performance computing. 
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form of optimal design, optimal control, or 
inverse problems, is notoriously more 
challenging than the corresponding forward 
problem. First, the optimization problem is 
often ill-posed and requires careful 
regularization, despite the usual well-
posedness of the forward problem. Second, it 
usually results in a 4D space-time boundary 
value problem, despite the evolutionary 
nature of the forward problem. Third, the 
optimization problem often includes 
inequality constraints, which create 
difficulties not encountered in the forward 
problem. Fourth, the optimization objective 
and/or constraints are often formulated in 
probabilistic terms. And fifth, the forward 
problem is merely a subproblem associated 
with optimization, which can be orders of 
magnitude more computationally challenging. 
Indeed, when the forward problem requires 
petascale resources, the optimization problem 
will usually be in the realm of the exascale. 

Because of those difficulties, 
contemporary optimization methods are 
inadequate for the solution of frontier 
optimization problems that are governed by 
large-scale complex simulations. We need 
entirely new classes of efficient and robust 
optimization algorithms that address the 
difficulties listed above and can scale to the 
millions of processor cores that characterize 
future exaflop systems. The challenges in 
creating those algorithms are of the highest 
order, but they must be overcome to elevate 
decision-making for complex multiscale, 
multiphysics simulations from a practice 
relying on simple interpolative models to a 
more rigorous science based on high-fidelity 
predictive simulation. 

3.9 Integrated Sensor-Simulation 

Systems 
Many of the algorithms and methods 

discussed in this chapter must be merged 
together to address the challenges of creating 
integrated online sensor-simulation systems. 
In such systems, the goal is to assimilate data 
from sensors, often dynamically, to infer 
unknown parameters and states of large-scale 
simulations of physical systems (for 
example, an evolving hurricane), using 
methods from inverse theory. The updated 
simulation models are then advanced forward 
in time to yield predictions (such as storm 
path), which can then be employed for 
simulation-based decision-making (such as 
how to deploy emergency responders) or 
used as a basis for simulation-based optimal 
control. Optimal experimental design theory 
can then be used to determine optimal 
locations of sensors (for example to reduce 
uncertainties in the estimation of current 
atmospheric state); these locations are then 
fed back to steer the sensors to new locations. 
This entire cycle of sensing-assimilation-
simulation-prediction-control-steering is then 
invoked repeatedly, often in real time, over 
the life cycle of the evolving event. Such 
systems are becoming known as Dynamic 
Data-Driven Application Systems (DDDAS) 
[14].  

Algorithms and computational methods 
underlying DDDAS face enormous 
challenges. While such systems have been 
realized in practice, the models that are at the 
core of DDDAS simulations tend to be 
simple (such as lumped parameter models or 
ODEs), or else if they are high-fidelity 
models, the underlying data 
assimilation/control/steering algorithms tend 
to be simple and often heuristic. The 
challenge is to create online dynamic data 
driven application systems that employ high 
fidelity (multiphysics, multiscale, multi-
model PDE) simulations of the evolving 
event in conjunction with provably optimal 
algorithms for the assimilation, control, and 
steering components. A further serious 
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challenge is to carry out the DDDAS 
framework while rigorously accounting for 
uncertainties—in data, in models, in 
predictions, and in the design and control 
phases. Success in developing high-fidelity 
DDDAS systems that operate with quantified 
uncertainties will lead to significant 
beneficial impacts on many societal problems 
in such areas as manufacturing, commerce, 
transportation, hazard prediction and 
management, and medicine, to name a few.  

3.10 Verification, Validation, and 

Reproducibility 

 The viability of predictive simulation in 
CS&E is founded on the ability to carry out 
verification and validation (V&V) of complex 
CS&E models and codes. We distinguish 
among four different entities: the physical 
system of interest, the mathematical model of 
that physical system, the numerical 
approximation to the mathematical model 
required to render it solvable on a computer 
(that is, the computational model), and finally 
the software implementation of the numerical 
approximation. 

 Verification is the process of determining 
if a computational model of the physical 
system is an acceptable approximation of the 
mathematical model of the system. 
Verification comprises both code verification, 
and solution verification.  Code verification is 
the process of confirming that the computer 
code implementing the computational model 
correctly employs the algorithms developed 
for the implementation. Solution verification 
is the process that determines that the 
equations and mathematical constructions 
governing the model are numerically solved 
with sufficient accuracy for specific quantities 
of interest (QoI) and for the specific 
simulation at hand. Code verification employs 
analytical and manufactured solutions to 

assess expected convergence rates. The 
adoption of systematic software engineering 
practices gives further credibility in the 
development of complex scientific codes.  

 An additional mechanism for verification 
lies in the emerging initiative for reproducible 
computational research, which advocates that 
all details of computations, code, and data, be 
made conveniently available to other 
researchers [59]. Often the steps taken to 
generate computational results are embodied 
in software scripts or code. The predictions of 
large-scale complex simulation codes involve 
large numbers of small decisions, from data 
collation and filters to parameter settings in 
algorithms and software invocation 
sequences. Those decisions are often 
impossible to capture completely in the final 
published papers, simply because of their 
large number. In those cases a convenient 
way to communicate research methodology is 
to release the underlying code for inspection. 
Release of the accompanying data is the 
second necessary step for reproducibility of 
published computational findings. 

 Solution verification is the province of 
the field of a posteriori error estimation. 
Several decades of advances in this area 
provide the capability of yielding rigorous 
and, in many cases, guaranteed bounds on 
errors for specific applications. New error 
estimation techniques have been advanced 
that enable the estimation and control of 
modeling error, error due to uncertainty, and 
approximation error for multiphysics and 
multiscale models. The challenge for CS&E 
is the development of rigorous a posteriori 
error estimates and adaptive control of all 
components of error for the sort of complex, 
multiphysics, multiscale models 
characterizing Grand Challenge problems (as 
exemplified by those in Section 2.1) remains 
a challenging problem in CS&E that must be 
overcome to build confidence in the 
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predictions of such codes.  

 Validation of a model, in contrast, 
involves comparisons with reality, that is, 
experimental observations. We understand 
that validation is a process designed to give 
confidence in a model or to reject it: no 
model can actually be “validated”; it can be 
“not-invalidated” by physical observations, 
and common terminology is to declare such 
models as valid, a subjective decision. But 
before we can validate, by a criterion, any 
uncertain model parameters and other input 
data must be inferred from available 
experimental observations via a calibration 
process. However, the experimental data are 
themselves uncertain (due to measurement 
errors), and there may be uncertainties 
associated with the mathematical form of the 
model (structural uncertainty). The 
calibration problem thus seeks to determine 
probability distributions of model parameters 
that are consistent with the probability 
distributions of the observed quantities in the 
calibration experiment, the model uncertainty, 
and any prior information on the parameters. 
Bayesian inference provides a systematic 
framework for accounting for all of these 
sources of uncertainty in the calibration 
process. However, for problems with high-
dimensional uncertain inputs and expensive 
forward models, the Monte Carlo sampling 
techniques that underlie standard approaches 
used in Bayesian inference quickly become 
untenable. 

A calibrated model can then be subjected 
to a validation test using additional validation 
experiments not used for calibration. The 
uncertainties of the calibrated parameters, 
which are now random variables, are 
propagated through the calibrated model to 
produce probability distributions of outputs; 
these outputs are compared with the 
probability distributions of measurements 
from validation experiments using 

appropriate metrics and associated rejection 
criteria to assess model validity. If the model 
is rejected, then either it must be recalibrated 
with more or better data, or the model form 
itself needs to be refined, for example, to 
include a neglected phenomenon or to remove 
a simplifying assumption. In this way, the 
validation process drives model development 
and experimental measurements. The major 
computational challenges here are 
propagating uncertainties from model 
parameters to code outputs. As is the case 
with inverse uncertainty propagation, 
contemporary methods for forward 
propagation of uncertainty break down for 
expensive models and high-dimensional 
parameter spaces. Overcoming the curse of 
dimensionality for forward and inverse 

uncertainty propagation is critically needed 
for the development of rigorous and scalable 
methods for validation of large-scale complex 
models.  

A vital component of reproducible 
research in computational science is openly 
accessible code and data. With the expanding 
role of data-driven discovery and 
computational modeling and simulation in 
scientific discovery, the reproducibility of 
results places new demands on the robustness 
and documentation of software.  

Overcoming the curse of 
dimensionality for forward and 

inverse uncertainty 
propagation is critically 

needed for the development of 
rigorous and scalable methods 

for validation of large-scale 
complex models. 
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3.11 Recommendations  

The life’s blood of CS&E is 
computational methods. Often undervalued 
and taken for granted, excellence in research 
in this area is key to international leadership 
in broad areas of CS&E and CI. This chapter 
has reviewed the challenges associated with 
computational algorithms and methods as 
they face a new generation of complex 
problems in CS&E that must be solved on 
new generations of computing systems. The 
main conclusions drawn are: 

• An algorithmic Moore’s Law has held 
over the past four decades, with 
simulation capability progressing as 
much from developments in more 
sophisticated computational algorithms 
as from advances in hardware capability.  

 

• Advanced computational methods 
become even more critical as problem 
size and complexity (multiscale, 
multiphysics, multimodel) increase. 

 

• Advanced computational methods that 
map to emerging (manycore, hybrid) 
architectures are generally not available 
and will need to be developed and 
supported. 

 

• A lack of investment in computational 
methods will result in our inability to 
make effective use of new HPC systems, 
thus jeopardizing NSF HPC and other CI 
investments.  

 
The overall recommendation from this 
chapter is given below.  

 

 

 

 
RECOMMENDATION: 
A broad-based, comprehensive, long-term, and vigorous research program in 
advanced computational methods should be established to overcome the 
challenges faced in devising, analyzing, and scaling up new computational 
methods for a new generation of critical CS&E problems on advanced computing 
systems. These should include advances in discretization methods, solvers, 
optimization, and validation and uncertainty quantification methods, including the 
facilitation of reproducible research through affirmative steps such as the creation 
of repositories for code and data, all targeted at enabling new frontiers in large-
scale multiphysics simulations on emerging architectures. This program should 
support multidisciplinary and interdisciplinary teams that bring together applied 
mathematicians, computer scientists, and computational scientists and engineers.  
 

 



 38



 39

 

4.0 HIGH PERFORMANCE COMPUTING 

FOR GRAND CHALLENGE PROBLEMS 

 

4.1 Challenges of Exascale 

Computing 
Transformative discovery and innovation 

in most disciplines important to meeting the 
Grand Challenges, such as climate, energy, 
environment, national security, disaster 

preparedness, and medicine, depend on the 
pervasive and seamless availability of 
computing at scale. According to many 
projections, general purpose exascale 
computing equipment is likely to be available 
in the next 10-15 years [35]. However, this 
will likely be made possible only by dramatic 
changes in processor architectures, including 
very large scale of multi-core processing 
(perhaps in the range of 1000 cores per chip 
or beyond), power management, and 
packaging. New methodologies for power 
management at circuit, device, and system 
level, locality and concurrency of data and the 
computations that use/generate it, and 

resilience to system faults, are going to be 
crucial to development of these systems. 
Adoption and efficient use is thus likely to 
require many advances in programming 
models, tools, and techniques, training, and 
workforce development, and will also require 
significant investment in upgrading the 
applications and software stack. 

Concurrent to this revolution is another 
paradigm shift in the quantity, quality, and 
availability of digital data and its use in 
driving modeling and simulation. Computing 
is increasingly data driven and conversely 
HPC is often constrained by the high volume 
of data it generates and consumes. HPC needs 
to respond to these needs with architectures 
that are more flexible in terms of the balance 
between data handling capabilities and 
processing power. While we keep our focus 
on catering to the evolving science needs, it is 
also clear that advancement in the grand 

challenge science areas is greatly dependent 
on low barrier and adequate access to the 

Computing is increasingly 
data driven and conversely 
HPC is often constrained by 

the high volume of data it 
generates and consumes. 

As CS&E moves more towards 
adopting rigorous standards for 

validation, verification, 
documentation, and reproducibility, 

routine access to HPC is crucial. 

4 High Performance Computing 
for Grand Challenge Problems 
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existing models of computing at scale. 
Ubiquitous and seamless availability of high 
end computing from the scientists’ 
workbench are necessary to deliver on the 
promises of computational science.  As 
CS&E moves more towards adopting 
rigorous standards for validation, verification, 
documentation, and reproducibility, routine 
access to HPC is crucial.  

 Resource provision modalities like those 
advocated by “clouds” and grids will need to 
be integrated with HPC provisioning.4 Such 
provisioning, which can demystify the usage 
of HPC when coupled with appropriate CI for 
collaboration, can transform scientific 
investigation for entire disciplines, leading to 
an age of unmatched innovation and 
discovery.  However, much needs to be done 
to ensure that these cloud environments that 
are currently driven by the needs of 
commercial processors are also addressing the 
needs of the NSF community. Recent 
partnerships between NSF and commercial 
vendors on making these environments 
available to NSF funded scientists through a 
peer-reviewed competition are commendable 
[54]. A balanced provision of extreme and 
moderate scale computing is clearly needed 
as advocated in the three tier structure of 
Track I, II and III in the cyberinfrastructure 
vision [13]. The interpretation of the Tracks 
will need to be done in the context of 
available hardware options. The intermediate 
and lower end tracks must clearly include 
these mechanisms for modest scale HPC 
provisioning. NSF investments in these areas 
are crucial to ensure that these promising 
technologies are developed in manners 
consistent with the needs of NSF users. 

                                                 
4 The present NSF sponsored investment in the 
TeraGrid gateway is an early and successful 
example of such provisioning of HPC for well-
defined communities. 

 This is also an area where there exist 
significant opportunities for cooperation 
nationally (across multiple federal agencies 
NSF, DOE/OASCR, NASA, DOD, etc.) and 
internationally (e.g., with the PRACE Project) 
for synergistic investments. Progress in use 
and development of these resources will 
require much joint investment – see for 
example [25] for details of such an initiative. 

4.2 Core HPC Advances Needed 

for GC Communities   
A quantum increase in machine, software, 
and human resources must continue to be 
provisioned for widespread use among NSF 
researchers. The great quality and quantity of 
science enabled by existing resources (see, for 
example, http://www.teragrid.org) clearly shows 
that these resources are now an essential part 
of the research methodology for the NSF 
research community. HPC architectures, 
methodologies, and software to exploit these 
architectures are in a constant state of flux. 
Grand challenge applications need to take the 
fullest advantage of those systems at the 
earliest possible opportunity. Thus, it is 
necessary for the NSF research community to 
have early and low barrier access to the best 
equipment, methodologies, and software.  

 Apparent from the grand challenges listed 
earlier is the diversity of the applications 
addressed by NSF researchers.  That diversity 
requires support for very different 
computational methodologies and computer 
architectures in the NSF HPC arsenal. The 
constant evolution of these architectures and 
development of new methodologies dictate a 
consistent policy of forward looking 
investment in innovative hardware. The 
equipment available in the NSF portfolio of 
HPC resources should not only be able to 
meet the existing needs of the user 
community but also act as a driver for the 
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development of effective strategies and tools 
for best use of forthcoming machines by the 
considerable NSF computational science 
research community. 

 A list of developments and special 
capabilities needed for exascale platforms for 
HPC systems in the future (O(10) years) was 
recently proposed by a group of international 
experts as part of a roadmap for exascale 
software [25]. Significant among these are a 
need to reduce power costs to 25 pico-joules 
per floating point operation, 10 billion-way 
concurrency for simultaneous operation and 
latency hiding, O(100) petabytes capacity mix 
of DRAM and nonvolatile memory, and 
bandwidths of the order of 1 terabit enabled 
by optical technologies. Each one of these 
features is going to be necessary to attain the 
target of a usable exascale computer that 
satisfies the “politico-economic” constraint of 
25MW for the maximum power consumed. 
Ensuring that the software and hardware 
developments targeted here do actually 
happen is challenging and will need the 
detailed and balanced program of investment 
we outline below. 

4.3 Software Stack - Programming 

Models, Compilers, Debuggers, 
and Development Environments 
for Extreme Scales 

 The Message Passing Interface (MPI) 
based programming model, which requires 
the inherently flat architecture of most of the 
high end computers used today, will need to 
be reinvented to meet the application 
challenges outlined in the previous section. 
New programming models that allow 
researchers to exploit the heterogeneity of 
processing elements and the hierarchy of 
memory and data storage need to be 
developed. Current attempts at using, for 

example, Partitioned Global Address Space 
(PGAS) languages need to be investigated, 
but there also needs to be fresh thinking on 
alternate approaches that enable Grand 
Challenge applications to take advantage of 
locality of data and memory usage where they 
exist. New generations of architectures will 
need innovative combinations of different 
types of processors and accelerators for 
processing, memory and storage structures, 
and application-driven asynchronous usage of 
machine elements. These architectures will 
need new programming modalities and tools.  

 Computer architecture development is 
guided by the power budget as much as by 
the computing needs of the Grand Challenge 
applications. That constraint will be crucial to 
the move to the next stage of development. 
Recent analysis [16] indicates that, to deliver 
the necessary computing at power budgets 
that are realistic, significant reductions will 
have to be made in the power consumed at all 
scales of computing equipment. Usage of 
graphics processing units and accelerators to 
provide customized computing capability has 
made multiteraflop and petaflop scale 
computing affordable. However, this 
approach is unlikely to be adequate for the 
next generation.  A more holistic approach, 
one integrating application-aware approaches 
to power management, is likely to be needed. 

4.4 New Numerical Algorithms to 

Efficiently Use Petascale and 
Exascale Architectures  

 The scaling to a million chips (with a 
thousand cores per chip) and the use of 
special-purpose accelerators, graphics cards, 
and data appliances will require the 
development of new algorithms and 
methodologies to deal with the fundamental 
shift in the computing and data storage and 
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access architectures. The parallel algorithms 
currently used in most applications presume a 
relatively flat processor layout, static 
partitioning, and scheduling based on a priori 
knowledge of the architecture and problem. 
The next generation of codes will need to 
exploit the fine-grain parallelism at the 
intranode/socket level (O(1000) cores with 
shared memory and coherent caches) and the 
coarse-grain inter-node parallelism (O(10000) 
nodes with relatively low bandwidth) 
simultaneously and respond to changes in 
machine and code needs at runtime. 
Algorithms that contain even limited fractions 
with O(P) schemes (P is the number of nodes) 
will have insurmountable bottlenecks in 
effectively scaling to future architectures. 
Locality of data and avoidance of nonlocal 
memory references will be needed. New 
algorithms must be created that enable such 
methodologies. 

4.5 Data Flow and Data Analysis at 

Extreme Scale  
 Many of the next generation Grand 
Challenge applications will be “data 
intensive.” The ratio of data movement to 
computing required by such applications is 
quite different from that for compute-
intensive applications.  Very large volumes of 
data need to be moved among processing 
elements and from secondary and tertiary 
storage. To enable such applications, great 
attention has to be paid to the data flow 
among the interacting components of the 
applications and the computing devices. Data 
required for a particular computation may 
reside immediately next to the processing 
element and available instantly, or the data 
may be as far away as a central repository a 
continent away. The systematic development 
of input and output systems to enable such 

data access dynamically will be a great 
challenge and will require much investment. 
Novel I/O architectures taking advantage of 
either localized preprocessing and/or solid 
state disks are also being developed. These 
architectures will fundamentally change the 
programming model that is appropriate for 
most applications. These core needs naturally 
lend themselves to a preliminary set of 
recommendations. Those recommendations 
must be coordinated with the companion 
groups working on a plan to address HPC 
needs of the NSF community before they are 
submitted to the community of stakeholders.  

 Coordinated investment in developing 
these critical technologies is needed. Ad hoc 
and diffuse funding models are unlikely to 
succeed. A piecemeal and unfocused strategy 
governing investment in these technologies in 
conjunction with other broad research goals is 
unlikely to succeed. Thus, success also 
requires that a single organization take the 
lead role in coordinating this investment. The 
recommendations summarized in the 
Executive Summary are to be interpreted in 
the context of the recommendation towards 
evolution of the Office of Cyberinfrastructure 
into an agent for the support of CS&E at 
large. 

4.6 Recommendations  

NSF has taken on the challenge of 
providing and maintaining the computational 
infrastructure for advanced computing for two 
decades. Providing the new infrastructure 
needed to meet the Grand Challenges in the 
future will be an especially daunting 
objective. 
 

 



 43

RECOMMENDATION: 
It is recommended that NSF, through OCI, continue to give high priority to funding 
a sustained and diverse set of HPC and innovative equipment resources to 
support the wide range of needs within the research community. These needs 
include support for the development of technologies to meet the foremost 
challenges in HPC, such as power-aware and application-sensitive architectures, 
new numerical algorithms to efficiently use petascale and exascale architectures, 
and data flow and data analysis at the extreme scale.  
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5.0 SOFTWARE INFRASTRUCTURE FOR 

GRAND CHALLENGE COMMUNITIES 

 

5.1 Introduction 

Computational modeling and simulation 
as well as data analysis and visualization are 
critical to advancement in many areas of 
science—from astronomy and astrophysics; 
to climate change prediction and hazard 
analysis, mitigation and response; to 
nanoscale science and technology and the 

biological sciences. Engineering innovation 
has also been revolutionized with high 
performance computing, especially 
replacement of expensive physical prototypes 
with virtual ones that lead to more optimal 
designs at much lower cost in less time. 
Although high performance computers are 
the enabling technology, such advances are 
driven by scientific and engineering 
applications – software – that capture the 
physics, chemistry, and biology in the 
description of the natural or engineered 
system. The software infrastructure for 
science and engineering is a critical part of 
the national cyberinfrastructure. 

The software used in the solution of 
science and engineering problems, including 
ones that are Grand Challenges, is a complex 
hierarchy of software components, often 
referred to as the software stack. As 
discussed in the Task Force Report on 
Software, this software hierarchy includes: 

• Computing systems software for 
operating and managing computer 
systems, such as operating systems and 
file systems for individual computers and 
middleware for distributed computing 
systems; 

• Tools for developing computational 
science and engineering applications and 
data analysis and visualization tools, such 
as compilers, debuggers, and numerical 
libraries; and 

• Science and engineering applications, 
including the tools needed to analyze and 
visualize the data produced by these 
applications. 

Advances in computing systems software 
are needed to operate and manage the 
increasingly complex computing systems 

The software infrastructure for 
science and engineering is a 

critical part of the national 
cyberinfrastructure. 

Advances in software are required in 
all areas: computing systems 

software, middleware, and science 
and engineering applications to solve 

Grand Challenge problems. 

5 Software Infrastructure for 
Grand Challenge Communities 
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required to solve Grand Challenge problems; 
middleware is needed to provide the required 
functionality in distributed computing 
environments for addressing a growing class 
of data-intensive Grand Challenges; 
advanced tools are needed to facilitate the 
development of sophisticated applications 
and analysis tools; and, finally, a new 
generation of science and engineering 
applications is needed to take full advantage 
of the extraordinary capabilities provided by 
the advanced computing technologies needed 
to solve Grand Challenge problems. In this 
chapter we will focus on the science and 
engineering applications needed to address 
the types of Grand Challenges outlined in 
Chapter 2.  

5.2  Key Issues in Software 

Development 

As the scientific and engineering 
communities solve ever more complex 
problems in an environment of ever 
advancing computing technologies, a number 
of key issues must be taken into account, 
including: 

Evolution of Computing Technologies. 
Computing technologies continue to evolve 
with major changes arising nearly every 
decade. In the past two decades, we have 
seen the decline of vector computers and the 
emergence of parallel computers powered by 
microprocessors with performance 
approaching that of the earlier generation of 
supercomputers. These single core 
microprocessors are now being replaced by 
multi-core and many-core microprocessors. 
Single processor performance increased by a 
factor of 1000 from the mid 1970s to the mid 
2000s, but in 2004 performance leveled off 
as thermal effects prevented further increases 
in processor frequency. Now, increases in 
cores per chip provide the engine for 

advances in performance and software must 
adapt to exploit this new level of parallelism. 
Many other factors are also in flux, for 
example, the performance of memory 
subsystems and the speed of the processor 
interconnect relative to that of the 
microprocessor; these changes also have 
significant implications for the design of 
scientific software. 

Evolution of Scientific Software. Major 
science and engineering applications have 
lifetimes measured in decades. However, 
they are constantly changing as the science 
questions advance and understanding of 
phenomena improves while, in parallel, the 
underlying computational algorithms and 
numerical methods continue to improve. 

Science and engineering applications, which 
may contain tens of thousands to millions of 
lines of code, must also adapt as the 
computing technology changes—from minor 
revisions as the computer hardware and 
systems software evolve to major revisions 
as disruptive changes in computing hardware 
and algorithms occur. As an example, 
consider GAUSSIAN, which was developed 
by John Pople, who won the Nobel Prize in 
Chemistry in 1998. Pople began the 
development of GAUSSIAN, which is still 
the most widely used computational 
chemistry application today, in the late 1960s 
[23] and it has continued to evolve over the 
past forty years [42]. However, the 
performance of GAUSSIAN has now 

Major science and engineering 
applications have lifetimes that 
are often measured in decades 
and, thus, must evolve as the 

underlying computing 
technologies change.  



 47

reached a plateau and will likely not increase 
further unless it is rewritten to exploit multi- 
and many-core processors. This is a major 
undertaking for such a complex molecular 
modeling application. 

Reproducibility of Computational Results. 
Another example of a disruptive change in 
the evolution of scientific software comes 
with the increasing use of workflows to 
coordinate the numerous steps in a research 
task and their impact on the reproducibility 
of results. Use of computational tools is 
appearing in an increasing number of 
scientific research settings in which the tools 
are used in complex, highly differentiated, 
and granular workflows. As a result, 
reproducibility is poised to become a key 
issue in computational science and 
engineering and in data management. Tools 
for provenance tracking are emerging but 
need to be developed at a faster rate and for a 
much wider number of research problems 
[57]. Version control systems for code 
development exist but are not routinely used 
by all computational scientists. Version 
control and provenance are not just important 
for software but for data as well. With the 
diverse background of the many researchers 
using computation, provenance tools must be 
easy to use and be applicable to new 
problems.  

5.3  Multiple Activities of Software 

Development  

In the past, development of applications 
for science and engineering was driven by a 
patchwork of individually funded projects 
with little attempt to coordinate and integrate 
the best approaches into a single package. 
Some research communities addressed this 
problem by developing applications that 
integrated the advances being made into a 
“community code,” although there was 

usually no direct support for this effort 
(GAUSSIAN is an excellent example of this 
practice). With the increasing complexity of 
computing systems, it is no longer possible to 
take full advantage of the advances in 
computing technology using this ad hoc 
approach. Now is the time to re-examine how 
best to support the development, 

maintenance, and upgrading of the software 
needed by the nation’s researchers to advance 
science and engineering, However, it must be 
recognized that the development of 
computational science and engineering 
software requires the support of multiple 
activities: 

1. Development of software to test new 
concepts, mathematical models, and/or 
algorithms. These activities are usually 
targeted at the development of software to 
demonstrate a concept, model or 
algorithm and are undertaken by 
individual scientists or small groups. 

2. Development of community codes. These 
applications are intended to support the 
research of a well-defined community of 
users, many of whom may participate in 
the development of the software. This 
software may employ the new concepts 
and algorithms developed either by small 
groups, those developed by the 
community of researchers involved, or by 
the teams of researchers tacking Grand 
Challenge problems (see below). 

Now is the time to re-examine 
how best to support the 

development, maintenance, 
and upgrading of the software 

needed by the nation’s 
researchers to advance 

science and engineering.
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Facilitating collaborative code 
development has the corollary effect of 
supporting reproducibility of published 
computational results by making the code 
widely available, independently tested, 
and useful well beyond the originating 
research group. 

3. Development of software targeted for use 
on the nation’s most powerful computing 
systems.5 These are often large 
collaborative efforts that include 
distributed teams of computer scientists 
and applied mathematicians as well as 
disciplinary scientists and/or engineers. 
The development of this software often 
poses unique challenges since it is 
targeted at computers at the leading edge 
of computing technologies of a scale and 
complexity previously nonexistent. 

The current funding mechanisms at NSF 
work well for activity 1, where principle 

investigators are funded for a limited number 
of years to develop an innovative new 
concept, model, or algorithm. However, they 
are far from optimum for activities 2 and 3, 
where long-term funding is needed to support 
the production of reliable, robust software for 
a broad audience of scientists and engineers. 

                                                 
5 Such as the Track 1 and 2 systems funded by the 
NSF and the leadership computing facilities 
funded by the U.S. Department of Energy. 

The technical issues encountered in 
developing software for advanced computing 
systems rival those encountered in other 
research activities and require an 
understanding of a broad range of disciplines, 
from the scientific problems that are being 
targeted to the underlying computing 
technology and algorithms. The computer 
science community has, at times, provided 
high-level languages and programming aids 
to ease the programming effort. Yet, science 
and engineering software often lags behind, 
as illustrated by the GAUSSIAN example, 
due to lack of sufficient funding to rewrite or 
revise the software, uncertainties in support 
for some of the basic software infrastructure 
provided by computer scientists, and the 
detailed knowledge and expertise required to 
implement the most sophisticated 
applications on modern highly parallel 
computers. 

In the current funding environment, 
many software advances are not fully 
exploited and may even be lost because there 
is no mechanism for the identification of the 
most valuable software and its long-term 
maintenance and evolution. Although, as 
noted above, some communities have dealt 
with this issue by establishing loose 
coalitions devoted to the development and 
maintenance of selected software packages, 
the sustainability of these efforts is 

questionable. In addition, because of the lack 
of direct funding, the level of effort is often 

Long-term funding is needed 
to support the production of 

reliable, robust software for a 
broad audience of scientists 

and engineers. 

NSF must recognize the 
critical role of software in the 
nation’s cyberinfrastructure 
and ensure that widely used 
software is maintained and 

continues to evolve.  
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minimal, which can lead to suboptimal 
software. NSF must recognize the critical 
role of software in the nation’s 
cyberinfrastructure and ensure that widely 
used software is maintained and continues to 
evolve in response to community needs. 
Professional staff will play a key role in 
achieving this goal. These individuals have a 
unique combination of knowledge and 
expertise—disciplinary science or 
engineering, computational science or 
engineering, software engineering, and high 
performance computing—that is essential for 
creating, maintaining, and evolving these 
usually complex software packages. Funding 
agencies should explicitly include support for 
professional staff in their grants and help 
create a satisfactory career path for them. 

A major development within the past 
decade has been the use of an open source 
license as a means of making software freely 
available to the computer and computational 
science community. Although Linux is the 
best-known example of open source software 
[43], many science and engineering software 
developers have long made their software 
freely available to the community. This 
practice allows researchers to quickly build 
on the innovations of others to advance their 
work. Because of the clear benefits of this 

approach, federal agencies have begun to 
require that software developed under their 
support be made available via an open source 
license. This requirement is critical for the 
development of a computing software stack 

for science and engineering, where the 
software developed by several groups, who 
may be funded by more than one federal 
agency, must work together. In fact, 
discussions are currently under way on the 
development of the software stack for 
exascale computers that will likely require the 
integration of software developed by 
researchers funded by agencies in several 
countries [44]. Also, recent work on code and 
data release accompanying published results 
indicate the use of the “Reproducible 
Research Standard,” or similar open licensing 
structure [59]. 

5.4  Exemplary Programs and 

Projects in Software 
Development 

Although the importance of software for 
advancing science and engineering has long 
been recognized at federal agencies that 
support research, few explicitly support 
software development as an end in itself. As 
two examples to the contrary, the National 
Institutes of Health (NIH) has supported the 
development and continuing evolution of 
NAMD, a molecular dynamics application 
targeted at computational modeling of large 
biomolecular systems [45], since the late 
1980s through its National Center for 
Research Resources program [46] and, in the 
1990s, as part of the Environmental 
Molecular Sciences Laboratory Project, the 
U.S. Department of Energy supported the 
development and continuing evolution of 
NWChem, one of the few molecular science 
applications that scales to 100,000 cores [2]. 
These applications are used by tens of 
thousands of researchers worldwide and are 
exemplary of major software development 
projects that have had an extraordinary 

Making software developed 
under federal support available 
via an open source license is 
critical for the development of 
a computing software stack for 

science and engineering.  
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impact.6 However, even in these cases, the 
full cost of the software development effort 
are not being fully supported. 

More recently, programs have arisen that 
target the development of software for 
science and engineering. Principal among 
these are the Biomedical Information Science 
and Technology Initiative (BISTI) [47] at the 
National Institutes of Health, which has 
focused on the development of scientific 
applications important to biomedical 
research, and the Scientific Discovery 
through Advanced Computing (SciDAC) 
program [48] at the U.S. Department of 
Energy, which is focusing on the 
development of the software stack needed for 
scientific and engineering research relevant 
to DOE’s mission. Both of these initiatives 
have seen significant investment and are 
serving their target community’s needs, 
although, again, few would argue that the 
level of support is adequate to meet the 
challenges posed by petascale computing 
(and beyond) technologies needed by the 
Grand Challenges. 

At NSF, funding for the National Center 
for Atmospheric Research has long included 
support for the development of software for 
the atmospheric sciences research 
community. In particular, NSF supported 
development of the NCAR Graphics package 
[49], the netCDF library and interface [50], 
and the Community Climate System Model 
[51] and the Weather Research Forecasting 
[52] applications. All of this software has 
found application outside NCAR and the 

                                                 
6 It should be noted that some of the technology 
developed in the NWChem project, e.g., Global 
Arrays, has been used in many other molecular 
science applications, e.g., GAMESS-US and 
MolPro, and Charm++, which lies at the heart of 
NAMD, is now being used in a number of other 
scientific applications. 

community that it directly supports. The 
NSF’s Supercomputing Centers Program also 
funded the development of a substantial suite 
of software that facilitated the use of the 
supercomputers installed in those facilities. 
More recently, these supercomputing center’s 
efforts have been replaced by several 
independent programs, e.g., SDCI (Software 
Development for Cyberinfrastructure) and 
STCI (Strategic Technologies for 
Cyberinfrastructure), which are funding a 

number of important efforts; e.g., the Alpaca 
project [53], which is developing high-level 
tools to help scientists develop and maintain 
large, complex applications. It has yet to be 
seen if the SDCI program will be able to 
create and maintain the integrated software 
stack needed by the nation’s science and 
engineering research community. 

5.5 Recommendations  

Software to support the Grand 
Challenges in science and engineering are a 
critical part of the national 
cyberinfrastructure. Software investments 
often have a broad impact because, more 
often than not, the software created in one 
project is widely disseminated and 
incorporated in other research projects, 
enabling them to achieve their goals. 
Computational science and engineering will 
advance most rapidly if the National Science 
Foundation develops a cyberinfrastructure 

It is yet to be seen if the SDCI 
program will be able to create 
and maintain the integrated 

software stack needed by the 
nation’s science and 
engineering research 

community.  
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program that carefully balances its 
investments in computer hardware and 
computer software.  

It is recommended that NSF establish a 
program to support the development of 
scientific software for Grand Challenge 
communities that complements the single 
investigator programs that are currently so 
successful. It must not only support the 
creation of new concepts, models, and 
algorithms, it must also support the creation, 
maintenance, and evolution of major science 
and engineering applications. While it is 
clearly premature to prescribe new 
mechanisms for supporting the development 
of the software needed for computational 
science and engineering research, a few core 
ideas are beginning to emerge. 

• Groups that can integrate expertise in 
computing technology, software engineering, 
and computational methodology with science 
and engineering and are embedded in 
application domains, can provide a much 
needed locus for the sustained development 
and maintenance of essential science and 
engineering software.  

 

 

• Professional staff, individuals who have 
expertise in science or engineering, computer 
science and/or engineering, software 
engineering, and high performance 
computing, are critical to creating science 
and engineering applications that can evolve 
to meet the needs of the communities they 
serve as well as evolve as computing 
technology changes. 

With the arrival of petascale computers 
and the expected progression toward multi-
petascale and exascale computers in the next 
decade as well as the rapidly growing 
capabilities in data-driven discovery, 
opportunities for advancing science and 
engineering have never been higher. Also, 
with the expanding role of data-driven 
discovery and computational modeling and 
simulation in decision support as well as 
scientific discovery, the reproducibility of 
results places new demands on the robustness 
and documentation of software. As a result, 
the demands on innovative and sustainable 
software have never been higher. These 
considerations lead to the following 
recommendations.  
 
 

RECOMMENDATIONS: 
It is recommended that NSF: 

1) Support the creation of reliable, robust science and engineering applications 
and data analysis and visualization applications for Grand Challenges as well as 
the software development environment needed to create these applications. 

2) Provide support for the professional staff needed to create, maintain, evolve 
and disseminate the above applications as part of its grant funding. 

3) Establish best practices for the release of science and engineering 
applications and data as well as the workflows involved in their creation to ensure 
the reproducibility of computational results. 
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6.0 DATA AND VISUALIZATION 

 

6.1 The Data Challenge 

Digital technologies have transformed 
every facet of research, from the questions 
asked and the methods used to the ways in 
which researchers interact. Since 2003, digital 
information makes up 90 percent of all 
information production, vastly exceeding the 
amount of information on paper and film. As 
simulations and experiments generate many 

petabytes and even exabytes of data, science 
is becoming increasingly data intensive. For 
example, climate models are expected to 
generate hundreds of exabytes by 2020 [9], 
and the Large Hadron Collider (LHC) will 
produce roughly 15 petabytes of data 
annually over its estimated 15-year lifespan 
[86]. Thus, one of the greatest scientific and 
engineering challenges of the 21st century is 
the endeavor to understand and make 
effective use of this growing body of 

information. Scientific breakthroughs will be 
powered by advanced computing capabilities 
that help researchers manipulate, explore, and 
model massive datasets. Indeed, a deluge of 
data has shaped a new era in computing, a 
shift called by Jim Gray the “fourth 
paradigm” of science, which will focus on the 
power of data-intensive computing [27], 
following the first three paradigms of 
science—experiments, theoretical hypothesis, 
and computer simulation. In this paradigm, 
science follows a data-first approach in which 
massive amounts of data are collected by 
automated instruments and then processed via 
visualization, data mining, and statistical 
modeling to discover regularities and generate 
and test hypotheses. 

Several reports and books have been 
published in recent years that discuss the 
challenges created by the “tsunami” of 
scientific data and the potential 
transformative opportunities for science and 
society [e.g., 22, 61]. Many studies have 
begun to address the major issues in the 
management, policy, research challenges, and 
use of digital data. These issues include the 
integrity, accessibility, and stewardship of 
data [15], the long-term preservation of 
digital data [31], and the economical 
sustainability of data [60], as well as the 
challenges in scientific visualization [37, 28, 
65], modeling and simulation [58, 35], data 
analysis [32], and software development [17, 
25]. To address those issues [5], major 
committees have been established, including 
the Interagency Working Group on Digital 

Since 2003, digital information 
makes up 90 percent of all 

information production.  One 
of the greatest scientific and 

engineering challenges of the 
twenty-first century is to 

understand and make effective 
use of the growing body of 

information. 

6 
Data and Visualization 
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Data (IWGDD) and the National Research 
Council Board of Research Data and 
Information (BRDI). 

This chapter focuses on data and 
visualization issues relevant to Grand 
Challenge Communities and provides 
scientific case studies of each. Those aspects 
are (i) value proposition of digital scientific 
data and visualization, (ii) data science and 
data infrastructure as a major component of 
research in cyberinfrastructure, and (iii) the 
scientific and user communities of data-
intensive science. 

6.2 Broad Impact of Digital 

Scientific Data 
 The continuous cycle of generation, 
access, and use of an ever-increasing range 
and volume of digital data is transforming all 
elements of science. To harness the 
accelerating data explosion, our most 
important tools now include data 
management and visualization. Indeed, the re-
use and re-purposing of digital scientific data 
and visualization capabilities will have a 
dramatic impact on scientific, biomedical, and 
engineering research; defense and national 
security; and industrial innovations. 

 Success Stories. Access to high 
performance computing resources to collate, 
interpret, model, and visualize scientific data 
in real-time has led to significant advances in 
our understanding of weather, fundamental 
physics, chemistry and structural biology, and 
earthquakes among other fields of scientific 
discovery. A relevant and representative 
success story for data and visualization is the 
real-time prediction of tornados as 
exemplified by the NSF Center for Analysis 
and Prediction of Storms 
(http://www.caps.ou.edu/)  where weather data 
is sampled in real-time and sent over 
dedicated links to high performance 

computing resources for modeling and 
simulation followed by visualization to map 
out high probability regions and tracks for 
tornados (http://www.psc.edu/science/2007/ 
storms.html/). 
 Several examples of projects under way 
illustrate the demands on data management, 
and challenges and opportunities of data-
driven science:  

1) Global Earth Observation System of 
Systems (GEOSS). Earth observations are the 
data collected about the earth’s land, 
atmosphere, oceans, biosphere, and near-
space environment. These data are collected 
by means of instruments that sense or 
measure the physical, chemical, and/or 
biological properties of the earth. These data 
provide critical information to assess climate 
change and its impacts; ensure healthy air 
quality; manage ocean, water, mineral and 
other natural resources; monitor land cover 
and land use change; measure agricultural 
productivity and trends; and reduce disaster 
losses. The Strategic Plan for the U.S. 
Integrated Earth Observation System directly 
supports the efforts of more than 70 countries, 
who are working together to achieve a 
GEOSS – which will interconnect a diverse 
and growing array of instruments and systems 
for monitoring and forecasting changes in the 
global environment (http://usgeo.gov/docs/ 
EOCStrategic_Plan.pdf). 

2) Reverse Engineering the Brain. The 
brain is the most complex biological system 
we know, and understanding its functionality 
is the compelling biological challenge of the 
century. How do thought, action, and emotion 
arise from the building blocks of life? The 
National Academy of Engineering has 
selected reverse engineering the brain as one 
of its grand challenges.  The cerebral cortex 
of the human brain contains more than 160 
trillion synaptic connections that originate 
from billions of neurons. Given the 
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complexity of the nervous system, it is not 
surprising that the neurosciences are rich in 
the use of and need for data. The 
neurosciences now rely heavily on in vivo 
imaging methods and computational models, 
both of which depend on computing power 
and mathematical techniques. Large-scale, 
high-resolution images of small sections of 
the brain are already measured in tens of 
petabytes and increasing. In addition, 
neuroscientists must work across multiple 
scales of resolution and must integrate such 
diverse data sets as cellular neuroimaging, 
gene expression data, genotype data, neuronal 
morphology, and clinical data. With new 
technologies, there are hopes to ultimately 
create a “connectome”—a complete circuit 
diagram of the brain. This goal will require 
intensive and large-scale collaborations 
among biologists, engineers, and computer 
scientists. 

3) Integrated Public Use Microdata 
Series (IPUMS). The study of powerful large-
scale trends such as economic development, 
urbanization, expanding migration, 
population aging, and mass education by 
social, behavioral, and other scientists 
requires access to global-scale micro-data – 
data about individuals, households, and 
families collected by census offices around 
the world. IPUMS provides researchers and 
educators with interoperable access to data 
from more than 130 censuses in 35 countries, 
representing more than 279 million person 
records. This powerful digital collection 
meets critical research needs while 
successfully preserving appropriate privacy 
and confidentiality rights. In addition, IPUMS 
allows researchers to construct frameworks 
for analyzing and visualizing the world’s 
population in time and space. This broader 
view allows researchers to identify agents of 
change, to assess their implications for 
society and the environment, and to develop 
policies and plans to meet or prevent future 

challenges at local, regional, national, and 
global-scales 
(https://international.ipums.org/international/). 

4) Next-Generation Sequencing and 
Genomics. Genome sequencers are making 
rapid advances, with those newly available in 
2010 having up to 1000 times more 
throughput, thus enabling results up to 1000 
times less costly than the previous generation 
DNA sequencing tools; these advances are 
transforming life sciences research. It is now 
feasible to study metagenomics—the 
collection of genomes recovered directly from 
environmental samples – to characterize 
unculturable organisms and complex 
microbial communities in their natural 
environment. This also includes the study of 
the human microbiome—the collection of 
genomes of microbes in the human body, and 
their impact on human health and human 
disease. The large-scale sequencing of 
individual human genomes can uncover 
genetic variants associated with disease, 
leading to the potential use of the personal 
genome in medicine. Where high-throughput 
sequencing was previously limited to large 
genome centers, next-generation sequencing 
has brought the field of genomics back into 
the laboratories of single investigators or 
small academic consortia. With a throughput 
of one terabyte per day and increasing, it 
requires cost-effective, compact solutions that 
provide high performance computational 
power combined with vast storage capabilities 
in order to fully exploit the success of modern 
sequencers.  

5) Sensor Networks. Many areas of 
science and engineering, such as terrestrial 
ecology, oceanography, and geosciences, are 
rapidly becoming data-driven sciences. Large, 
spatially-distributed and heterogeneous 
networks of sensors are being deployed 
including fixed instruments, mobile sensors, 
and citizen scientists.  The resulting data are 
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voluminous, spatially distributed, and 
collected on different time scales and with 
different sampling plans and sampling biases.  
Furthermore, the miniaturization of sensor 
technology is driving a tradeoff from 
deploying a small number of expensive, 
highly-reliable sensors to deploying many 
thousands of cheap, unreliable sensors.  This 
gives rise to many challenges: (i) data 
cleaning: quality assurance and quality 
control of raw data must be fully automated, 
because the data are too voluminous for 
manual inspect and cleaning; (ii) data fusion: 
data at multiple spatial-temporal scales and 
collected under different protocols must be 
fused to a single scale or by employing novel 
multi-scale modeling methodologies; (iii) 
data filtering/disposal/transport: typically data 
are collected at distributed remote locations; 
analyzed at a second site, usually a computing 
facility; visualized and interpreted at a third 
site such as the scientist’s desktop; and finally 
must be assimilated into predictive models 
and decision-making tools such as for forest 
management, public health management, etc. 
Necessary cyberinfrastructure includes 
greatly improved networking, algorithms, and 
low power hardware for in situ data 
reduction/compression/sampling, multi-
resolution, multi-tiered distributed data 
storage, algorithms for petascale data mining, 
and distributed algorithms for visualization 
and decision support. 

6.3 The Need for a Data 

Infrastructure 
Data-centric science is characterized by 

the massive scale and complexity of data and 
the interdisciplinary and multidisciplinary 
nature of data generation, management, 
analysis, and use. The heterogeneous methods 
and devices for data generation and capture 
and the inherently multi-scale, multi-physics 
nature of many sciences have resulted in a 

mass of data with hundreds or thousands of 
attributes or dimensions and spanning 
multiple spatial and temporal scales. Thus, 
not only are centralized storage repositories 
“data-intensive”, but so are the far greater 
volumes of data that are network-accessible 
in offices, labs, and homes and by sensors 
and portable devices. Thus, data-intensive 
computing should be considered more than 
just the ability to store and move larger 
amounts of data. The complexity of the new 
datasets, as well as the increasing diversity of 
the data flows, is rendering the traditional 
compute/datacenter model inadequate for 
modern scientific research.  

 Indeed, as the International Exascale 
Project Roadmap [25] emphasizes, “The 
potential impact of Exascale computing will 
be measured not just in the power it can 
provide for simulations but also in the 
capabilities it provides for managing and 
making sense of the data produced.” New 
infrastructures are needed to enhance 
capabilities for finding, using, and integrating 
data to accelerate its use in discovery and 
innovations.  

 Deficiency of Current Data 
Infrastructure and Lessons Learned. There is 
currently a lack of robust cyberinfrastructure 
for data science.  The recent DataNet 
program, for example, is of an exploratory 
nature and not structured to provide general-
purpose data infrastructure. Similarly, the 
storage and archive resources of the TeraGrid 
are designed only to support infrastructure 
for TeraGrid compute systems. As the world 
becomes more instrumented and our 
processes for dealing with significant data in-
flow from sensors or experiment and data 
out-flow from simulation models becomes 
limiting, data and visualization become an 
ever-increasing challenge. This challenge is 
not only the physical management of the 
data, but also in the software tools to 
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manage, migrate, cache, and efficiently 
analyze the data.  Lessons from TeraGrid 
show that the standard model of running on 
high performance computing resources 
remotely followed by transferring the data 
back locally for analysis and visualization is 
breaking down.  Large scale data easily 
generated in a few days may presently takes 
weeks to transfer back to home institutions, 
and even this assumes high speed 
interconnect and the availability of local 
resources to store the data.  Researchers are 
spending more time on data management and 
simulation workflow than actually doing the 
science.  Previously, obtaining data was rate-
limiting; now the aggregation, analysis, 
interpretation, and visualization have become 
the limiting step. What is needed are ways to 
facilitate both remote, local, and on-the-fly 
data analysis and management. A step in the 
right direction is the InCommon federation of 
resources (http://www.incommonfederation.org/)  
that allows an authenticated user to get direct 
access to TeraGrid. However, this needs to 
be broadened to facilitate access to the data, 
for example to mount remote disk resources 
from the TeraGrid locally.  

 Data characteristics and infrastructure 
requirements. Scientific data must be thought 
of hierarchically or as tiered with different 
levels of performance, reliability, security, 
and accessibility.  Scratch disk space, high 
performance parallel, global file systems, 
archives, and real-time data streams 
necessitate different requirements; 
specifically, different policies, economies, 
and expectations related to lifetime, costs, 
value, and reliability. In the ideal scenario, 
real-time data flow would come into and out 
of simulations running on large parallel 
resources with on-the-fly analysis and 
visualization capturing data as fast as 
possible as a means to understand and 
potentially steer the simulations.  Yet, not all 
of the data can likely be saved, so data 

subsets will be either aggregated, reduced, or 
less frequently time sampled and 
subsequently saved on high performance 
parallel disks. Data will then be analyzed by 
other loosely coupled resources, which in 
turn may be reduced for longer term storage 
on more cost effective, ideally globally 
accessible, file systems for further analysis, 
and processing, ideally remotely and locally.   

 When data has to move between 
resources, middleware should facilitate 
migration, data integrity, caching, and also 
provide metrics for the expected timescale 
for the data availability. Gold standard data 
should be archived, and policies set to 
understand worth, cost, lifetime, need for 
annotation, and dissemination. Another 
complication is the notion of distributed data 
where collaborations independently work on 
pieces of the puzzle but later need to manage, 
integrate, and analyze the data. 

 The characteristics of scientific data 
further necessitate robust high-speed 
computer networks for several distinct 
reasons: (i) as instruments grow in diversity 
of location and richness of data, increasingly 
the data needed for the workflow will be large 
and not co-located with the processing 
resources; (ii) workflows are becoming more 
complex, and include data acquisition and 
processing, simulation and modeling, data 
analysis, and visualization by the discipline 
scientists; and (iii) the resources needed by 
the various workflow steps are not likely to 
all be in the same location. All these 
observations emphasize two key applications 
of computer networks: (a) moving large data 
sets and (b) supporting effective remote 
visualization (e.g., by streaming visualization 
flows at high speed over wide area.).  

 Components of a Robust Data 
Infrastructure. Major advances in computer 
science and engineering will be key to 
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addressing the cyberinfrastructure needed to 
empower data-intensive science. An end-to-
end approach is required that encompasses 
the entire data life cycle from the initial data 
acquisition, to data management and storage, 
and to data integration, analysis, visualization 
and knowledge discovery. An important 
rationale underlying the end-to-end approach 
is the central role reproducibility plays in our 
scientific efforts. Without the communication 
of the entire data life-cycle and data 
processing it is difficult – if not impossible – 
for fellow scientists to verify and replicate 
data-driven findings. While there are various 
domain-specific scientific applications, data-
intensive science shares major common 
cyberinfrastructure needs [17, 25, 32, 35, 65]. 
A robust persistent data infrastructure will 
consist of several major components: 

1) Data Analysis and Visualization. 
Innovative research is needed in the areas of 
data analysis, mining, and visualization to 

promote enhanced capabilities for finding, 
understanding, visualizing, and interacting 
with data, and to gain novel insights from 
extreme scale, complex scientific data. 
Visual analysis systems that enable 
interaction between the scientist users, the 
data analysis system, and the data are critical 
for supporting scientific discovery and for 
enhancing communication about science 
outcomes. Visual data analysis is needed for 
extreme scale, heterogeneous, and high-
dimensional scientific data. New 

mathematical and statistical approaches and 
algorithms are needed to scale with the size 
of the data, along with related parallel 
implementations able to scale with the 
exascale computing. New models and tools 
are needed for indexing, querying, and 
searching massive datasets. New algorithms 
should make effective use of new computer 
architectures being developed and the 
associated development of scalable 
algorithms, libraries and tools.  

2) Data Integration and 
Interoperability. To promote the effective 
integration and interoperability of data and 
data tools, systems, services, and resources 
will require the use and development of 
common standards. Also needed are 
ontologies for semantic data integration and 
analysis, support for collaborative data 
analysis, as well as knowledge representation 
and machine reasoning research to support 
automated analysis of large data sets and 
integration of data from multiple sources. 

3) Data Provenance and Stewardship. 
Concepts, strategies, tools, and automated 
protocols should be developed for data 
quality assessment and control, validation, 
authentication, provenance, and attribution. 
Data should be documented adequately 
enough to find it, interpret it, and understand 
its provenance – the processes that gave rise 
to it. This requires a robust infrastructure for 
uniquely naming data sets that will 
persistently resolve to the underlying data. In 
addition, high quality metadata will be 
necessary to properly interpret data for 
subsequent visualization and analysis. This 
will facilitate repeatability. By encapsulating 
context with the data, associated metadata 
can be properly interpreted in light of new 
discoveries. Support for automatic tracking 
of data usage as well as attribution of 
origination are needed to assess a data 
contribution. Indeed reproducibility can be 

New mathematical and 
statistical approaches and 

algorithms are needed to scale 
with the size of the data, along 

with related parallel 
implementations able to scale 
with the exascale computing. 
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used as a framing mechanism for the drive 
toward open data and shared analysis. On 
data disposition, deciding what data to keep 
or discard can be guided by the application. 
Best practices need to be developed for 
disposition decision-making, including 
strategies and practices for understanding the 
relationship between cost and benefits of 
archiving data.  

4) Scientific Workflow and Metatools. 
Scientific workflow allows a scientist to 
specify end-to-end control and data flow as a 
series of structured activities, computation, 
data analysis, and knowledge discovery. 
Meta tools are needed to aid process 
navigation, hypothesis tracking, workflows, 
provenance tracking, advanced collaboration, 
and sharing, as well as to support a proper 
balance between batch mode and interactive 
data exploration. Such tools are crucial to 
facilitating reproducibility and the ability of 
computational scientists to effective store and 
communicate the analysis underlying their 
results. Efforts to develop such tools are vital 
to the integrity and verifiability of data-
driven computational findings. 

5) Exascale Computing. Increasingly, 
experiments and observational systems are 
finding that not only is the data volume 
rapidly heading towards exabytes, but there 

are significant scientific and engineering 
challenges in both simulation and data 
analysis that are already exceeding petaflops 
and rapidly approaching the exaflops range. 
Hardware architectures, programming 
models, and algorithms for such data- and 
compute-intensive scientific applications 
must be explored. In particular, using 
exascale performance to rapidly do model 
simulations will allow the integration of data 
analysis and visualization into simulations to 
avoid storing vast amounts of data. 

6) Active Storage and Online Analysis. 
Extreme scale data sets are too large to easily 
move and often infeasible to analyze in their 
raw form. Modern storage architectures can 
be exploited for performing various 
important analysis tasks. Online analytics can 
potentially reduce the need to store certain 
types of data. The needs include active 
storage processing studies, software libraries 
to embed functions within storage, and data 
analysis techniques. Also needed are data 
reduction methods and hierarchical 
representations for data reduction prior to 
post-analysis. 

7) Data Storage and Management. Data 
storage needs include new scalable storage 
devices, caching algorithms to move data 
in/out from dynamic storage providing high 
level of performance, as well as scalable file 
systems with improvements in parallel I/O 
libraries. New database system approaches 
are needed to scale in performance, usability, 
query, data modeling, and an ability to 
incorporate complex data types in scientific 
applications. Scalable data format and high-
level libraries for data access need to be 
extended and redesigned. New storage 
formats that emphasize scalability and 
parallel I/O along with the capabilities to 
incorporate analytics and workflow 
mechanisms need to be developed. 

Not only is the data volume 
rapidly heading towards 
exabytes, but there are 

significant scientific and 
engineering challenges in both 

simulation and data analysis 
that are already exceeding 

petaflops and rapidly 
approaching the exaflops. 
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8) High-Speed Computer Networks. As 
the data increasingly flow physically from 
instrument and archive to various computing 
facilities to visualizations that involve the 
optic nerve of the science user, high-speed 
wide-area networks will be essential to the 
success of data-intensive science. Note 
specifically that the needed computer 
networks extend to the campuses of research 
universities. Thus, the architectures and 
designs of these networks will require a 
coordinated national effort that will include 
network leaders that operate at the national 
backbone, regional, and campus levels. 

6.4 Communities for Data-Intensive 

Science 
 Digital access can multiply the value of 
information through repeated use. While the 
ready availability of diverse data is shifting 
scientific approaches from the traditional, 
hypothesis-driven scientific method to 
science based on exploration, current analysis 
and visualization methods lag far behind our 
ability to create data. Multi- and 
interdisciplinary skills are needed to handle 
diverse issues such as automatic data 
interpretation, summary visualizations, and 
data integration from multiple disciplines and 

domains. High performance computers will 
be needed to analyze the massive scale and 
complex data on a time scale that is practical 
in human terms.  A systematic effort is 
needed to train the next generation of data 
scientists who can work in a multi-
disciplinary team of researchers in high 
performance computing, mathematics, 
statistics, domain-specific sciences, etc. 

 The value of scientific data is realized 
only when the data are effectively analyzed 
and the results are presented to the science 
community, policymakers, and public in an 
understandable way. This means that 
computational scientists must have the tools 
to track, save, and communicate their data 
analysis so that others are able to reproduce 
the findings. There are numerous examples 
of data re-use and re-purposing beyond the 
communities that generate the data. Because 
scientific data are often used in different 
ways according to their contexts and have 
varying life cycle requirements, solutions 
should support communities of practice and 
leverage their capabilities while promoting 
data integration and interoperability. Because 
those communities of practice are changing 
the way data are used and re-used and the 
way science in those communities is done, 
the community processes present an 
opportunity for research in the social, 
behavioral, and other sciences.  

 The challenge is to take data sets that 
were collected for a variety of other purposes 
and synthesize them to address important 
scientific and policy questions. Thus 
cyberinfrastructure requirements include 
support for data discovery (finding these 
existing data sets), schema mapping and data 
transformation (to convert the data into 
common frames of reference), and new 
computational statistics, machine learning, 
data mining, and visualization algorithms 

Current analysis and 
visualization methods lag far 

behind our ability to create data. 
Multi-and interdisciplinary skills 

are needed to handle diverse 
issues such as automatic data 

interpretation, summary 
visualizations, and data 
integration from multiple 
disciplines and domains. 
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that can support the modeling and 
visualization needed for synthesis studies. 

 An example of data repurposing is bird 
migration modeling. Bird migration is poorly 
observed and poorly understood, because 
birds are generally too small to carry 
instruments.  One promising approach to 
obtaining data is to re-analyze existing data 
collected by the network of NEXRAD 
Doppler radar stations operated by the 
National Weather Service. Fortunately, this 
data, in relatively unfiltered form, has been 
archived for the past 15 years. The BirdCast 
project is analyzing this data and combining 
it with citizen science bird checklists 
(http://www.ebird.org), a network of 
microphone arrays that capture species-
diagnostic flight calls (http://www.xbat.org), 
and several other data sources (weather 
forecasts, MODIS land cover data products, 
etc.) in order to develop statistical models of 
migration.  Migration modeling is a grand 
challenge for ecology and conservation.  It 
will only be possible by fusing 
heterogeneous data from many sources, 
including data collected for a wide variety of 
other purposes. 

 Another example, GEOSS, is a “system 
of systems” that supports policymakers, 
resource managers, science researchers, and 
many other experts and decision makers. 
Built on existing observational systems and 
incorporating new systems for earth 
observation and modeling, this emerging 
public infrastructure links a diverse and 
growing array of instruments and systems for 
monitoring and forecasting changes in the 
global environment. GEOSS further 
highlights the need for coherence among 
data-sharing principles adopted by 
international science collaborations and the 
policy and legal frameworks in place in the 
national jurisdictions where researchers 

operate 
(http://earthobservations.org/geoss_dsp.shtml).  
 Data-intensive computing promises 
breakthroughs across a broad spectrum of 
sciences and engineering and presents 
significant opportunities in the areas of 
energy, climate, socioeconomics, biology, 
and medicine. It will require the close 
collaboration of stakeholders in all sectors to 
fully realize the value of scientific data for 
science and society. 

6.5 Recommendations  

New opportunities are on the horizon for 
the development of creative uses of digital 
scientific data in innovative combinations for 
purposes of discovery, innovation, and 
progress. At the same time, the increasing 
demand for data processing, storage, and 
transfer in large-scale simulations based on 
data-informed models, stochastic systems, 
and requirements for model validation and 
uncertainty quantification represent new 
challenges in data-intensive computing.  

With the increasingly significant impact 
of data-driven science, we need to better 
communicate the value proposition of digital 
scientific data and visualization to the broad 
scientific community, policy makers, and the 
public—how science will be enabled with 
open access data, including novel 
visualization and interpretation; how 
discovery will be enabled by integration, 
transcending fields; and how new data types 
will motivate new applications and 
discoveries. To fully realize the value of 
research data, NSF must support research 
infrastructure, robust and persistent 
cyberinfrastructure, and training of data 
scientists and professionals to empower data-
driven science and data-intensive computing 
for discovery, innovation, and solution of 
society’s pressing problems in health, energy, 
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environment, and food.  
 
 
RECOMMENDATIONS:   
NSF, largely through and coordinated by OCI, should support research 
infrastructure and robust persistent cyberinfrastructure to empower data-driven 
science and data-intensive computing for discovery, innovation, and solution of 
society’s pressing problems in health, energy, environment, and food.  
 1) Research: Funding for research on data management, network infrastructure, 
data analysis, and data visualization (i) to manage the pipeline from field 
instruments to large-scale data analysis to end-user visualization and to public and 
policy makers, and (ii) to support data-intensive computing. 
 2) Data Infrastructure: Support for robust, persistent cyberinfrastructure to 
support the coordinated flow, storage, and management of data from instrument to 
(remote and local) computing resources to archiving and visualization. 
 3) Education: Support for building (i) the next-generation of data scientists who 
can work in a multi-disciplinary team of researchers in high performance 
computing, mathematics, statistics, domain-specific sciences, etc., (ii) data 
curation professionals who can support meta-data collection, indexing, and 
access, collaborating with scientists who collect and consume data. 
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7.0 EDUCATION, TRAINING, AND 

WORKFORCE DEVELOPMENT IN 
COMPUTATIONAL SCIENCE AND 
ENGINEERING 

 

7.1 The Status of Education in 

CS&E in the U.S. 

As earlier chapters have made clear, at 
the heart of all Grand Challenge projects is 
CS&E, a discipline built on interdisciplinary 
collaborations and deep knowledge of 
computational and applied mathematics and 
the scientific and engineering disciplines, as 
well as sophistication in computational skills. 
However, students often lack a fundamental 
understanding of the mathematical basis for 
scientific computation. In the U.S., this 

deficiency of understanding begins even 
before high school, and it continues to affect 
students throughout their undergraduate and 
graduate careers. Rather than teach these 
fundamentals as we did in earlier decades, the 
Science, Technology, Engineering, and Math 
(STEM) undergraduate curricula at many 
colleges and universities increasingly rely on 
the “black box” use of commercial software 
packages. As a result, students fail to learn 
the underlying concepts of modeling, 
programming, and “algorithmic thinking” that 
are critical to using computers in a scientific 
context [63]. 

The problem worsens as computers 
increase in complexity. Universities are 
falling behind in providing students with the 
knowledge needed to design algorithms and 
write software for modern architectures, such 
as those comprising multicore and hybrid 
processors that will take us to exascale 
computing and beyond [21,24]. The problem 
is exacerbated by the fact that computational 
science and engineering is considered neither 
the responsibility of the computer science 
departments, nor of domain sciences or 
engineering. As a result, teaching the core 
competencies of CS&E falls between the 

Universities are not 
adequately preparing today's 

students with the right 
background, skills, breadth, 

and depth to become 
tomorrow's computational 

scientists and engineers, able 
to harness powerful new 

supercomputers for scientific 
discovery and engineering 

innovation. 
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cracks.  Many students, therefore, fail to learn 
what is required to apply computing to the 
pressing and multifaceted technological 
challenges we face as a nation. For example, 
predicting and mitigating the impacts of 
climate change and designing clean energy 
technologies will require a robust 
understanding of CS&E. Yet our universities 
are not delivering the formal education 
required to address those global challenges. 
The core competencies of CS&E – including 
high performance computing (HPC) – are 
rapidly evolving, and most universities are 
not keeping pace. There are over 100 
graduate programs in CS&E at U.S. 
universities, yet few schools have the 
necessary expertise or curricula in “bleeding-
edge” HPC to prepare students to use next-
generation architectures.  The gap is widening 
between what is currently taught at most 
institutions and the skills needed for 21st 
century R&D [20, 24, 40]. 

The current generation of students favors 

the culture of open-source software in which 
individuals and teams can contribute in a 
shared community to public-domain codes. 
Those students, however, receive no formal 
training in creating sustainable codes that are 
essential for robust and effective software 
engineering. The skills essential for applying 
CS&E in modern scientific and technological 

enterprises are not broadly taught in the 
sciences or engineering, and the lack of those 
skills is significantly hampering the 
innovative potential of U.S. industry [66]. 
Topics missing from the curricula include 1) 
uncertainty quantification, 2) verification and 
validation, 3) risk assessment, and 4) decision 
making [24].  

 Of course, there are some graduate and 
postdoctoral students who do receive the 
proper education and training in CS&E and 
who want to pursue careers in academia, but 
those students often fail to blend in with 
existing faculty and departmental cultures. 
Computer science departments may be loathe 
to hire computational scientists. Similarly, 
application fields typically retain only a 
small fraction of computational scientists on 
the faculty, preferring to hire 
experimentalists over “theorists.” As a result, 
universities are evolving slowly in their 
ability to transform research and education 
by fully leveraging CS&E. The lack of a 
long-term commitment to funding of CS&E 
is a major contributing factor.  Programs 
such as NSF’s CDI program (and, before it, 
ITR and KDI) focused on or embraced 
elements of CS&E, but they were short-term 
initiatives, not permanent programs. Thus, 
ostensibly, NSF demonstrates no long-term 
commitment to the support of CS&E 
researchers, and that support is essential to 
attract new cyber science talent to the field of 
CS&E. U.S. universities follow the lead of 
the NSF: there will be no sustainable 
infrastructure for CS&E in most universities 
until there is one at NSF. 

7.2 Global Considerations 

Many countries embrace CS&E and 
recognize the role it will play – indeed, is 
already playing – in driving R&D. France, 
Germany, China, and Japan have made major, 
long-term commitments to HPC. Europe 

Programming the next generation of 
petascale and exascale computers 

for discovery and innovation requires 
new skills and knowledge that are 
rare among today’s computational 

scientists and engineers. 
New curricula, and new approaches 
to teaching and learning CS&E, are 

urgently needed. 
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already leads the U.S. in critical elements of 
CS&E. China is dedicating the equivalent of 
$1 billion/year to a new university program 
that requires research projects for graduate 
students to have integrated simulation and 
modeling components. Germany is 
restructuring universities to leverage 
university-industry partnerships. Singapore 
and Saudi Arabia are investing enormous 
sums into CS&E. In comparison, the U.S. is 
at risk of losing its leadership position in a 
field it invented. That decline in our research 
status would have a major impact on the 
nation’s ability to compete and innovate in 
the 21st century [11, 39, 58, 66].  

We believe these issues necessitate 
concrete action and leadership from 
policymakers. While there are some federal 
programs aimed at addressing inadequacies in 
CS&E training and education, we believe 
more resources and a coordinated approach 
are needed to address and overcome these 
pressing challenges. 

7.3  Existing Programs  

The challenges and needs outlined above 
demonstrate the need for US policymakers to 
rethink their approach to funding CS&E 
education. The NSF and other scientific 
agencies have programs in place supporting 
individual CS&E initiatives, but it is clear 
that additional resources and programs are 
required for the US to remain competitive in 
the CS&E field and in the global knowledge 
economy.  The following examples illustrate 
a few of the existing programs, along with 
their potential for impacting CS&E education. 

 The NSF CISE directorate houses the 
Pathways to Revitalized Undergraduate 
Computing Education (CPATH) [12]. 
CPATH focuses on providing K-12 and 
undergraduate students with fundamental 
computing concepts and methodologies 

necessary for building more advanced 
computational skills. Of the 26 awards made 
in FY 2009, only four address aspects 
directly related to CS&E generally by 
enabling curricula that incorporate concepts 
of simulation, modeling, and/or parallel 
computing. While this program is an 
important mechanism for enhancing CS&E 
curricula, its effect is on a relatively small 
scale and reaches a limited audience. To 
transform CS&E to meet the challenges 
outlined earlier in this report, a broader and 
more scalable approach is needed.  

 The NSF Course, Curriculum, and 
Laboratory Improvement (CCLI) program 
focuses on improving the quality of STEM 
education for all undergraduate students. 
Only very few of its awards, however, even 
touch on aspects of CS&E curricula.   

 There are several excellent examples of 
CS&E programs at the undergraduate level 
abroad. A recent study [24] reported the 
strong impact of extending the CS&E 
curriculum into the undergraduate arena at 
leading universities in Switzerland and 
Germany. A positive influence was felt 
throughout the STEM undergraduate 
curriculum. The availability of computational 
and analytical courses attracted students from 
a wide range of departments. 

The NSF Graduate Research Fellowships 
Program is an important source of support for 
graduate students in all non-biomedical fields 
of science. However, of the 1,248 awards 
made in 2009, only 82 were in the CISE 
cohort. Just 11 of those awards were related 
to scientific or parallel computing. Such 
limited and highly competitive opportunities 
provide little incentive for CS&E students to 
continue on to earn advanced degrees.  

The NSF Integrative Graduate Education 
and Research Traineeship (IGERT) program 
provides multidisciplinary traineeship grants 
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in all areas supported by NSF. However, the 
number of these grants focusing on CS&E 
topics is extremely small.  

NSF supports a limited number of 
computational science fellows through its 
Mathematics Research Training Group (RTG) 
program. 

The Department of Energy 
Computational Science Graduate Fellowship 
program supports CS&E graduate fellows. In 
2010 the program was able to add 20 new 
fellows bringing the total number currently 
being supported to about 80. Unfortunately 
the program is typically able to fund less than 
5% of the total applicant pool and even more 
critically, the review process leads to an 
annual pool of around 60 highly qualified 
applicants ready to study computational 
science and engineering. 

7.4 An Educational Call to Arms 

To leverage and exploit the full potential 
of CS&E, new curricula must achieve the 
following:  

1) Balance domain topics and 
mathematical and computational skills in a 
way that provides both depth and breadth;  

2) Teach software engineering skills 
needed to write, modify, verify, and validate 
robust and efficient CS&E codes that will 
address community needs over the long term;  

3) Teach underlying algorithms and their 
applications in a highly parallel multicore 
environment; 

4) Teach the fundamentals of simulation 
and modeling over a wide range of scales and 
applications [20]. 

Another way to state the challenges 
before us is to ask: How do we 1) modernize 
the CS&E curriculum, 2) provide the needed 

depth and breadth in education and training 
reflective of the 21st century 
cyberinfrastructure, given typical curriculum 
constraints, and 3) grow and diversify the 
workforce?   

Beyond traditional university 
experiences, learning opportunities must be 
provided to CS&E practitioners in the 
workforce so that they can stay current as 
computing architectures and paradigms 
continue to evolve. At the same time, 
opportunities must be created to support and 
nurture new computational scientists and 
engineers entering the workforce.  

To meet the challenges, new approaches 
to education, training, and workforce 
development in CS&E are needed.  These 
approaches are described below: 

1) New approaches to undergraduate and 
graduate CS&E education. These 
approaches should include the development 
of new curricula, courses, and/or programs 
in CS&E that address the computational and 
analytical skills required in virtually all 
STEM disciplines. Courses should be 
carefully developed and well-tested, with 
the objective of making the materials 
available to all colleges and universities in a 
form that is easy to extend and modify.   

 Work on a few foundational 
undergraduate courses is urgently needed. 
At the same time, the issues of integrating 
CS&E more broadly into the undergraduate 
STEM curriculum are complex and require 
study. Attention to undergraduate CS&E is 
essential; most applicants to graduate school 
have not even heard of CS&E because of its 
absence in the undergraduate curriculum. 
Summer institutes emphasizing basic CS&E 
skills as well as research activities and 
REU/RET sites focusing on CS&E are 
recommended for undergraduates and for 
exceptional high school students. 
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2) New virtual communities engaged in 
CS&E education. A virtual community 
could develop and disseminate teaching 
materials, innovations, and best practices 
nationwide, thereby accelerating the 
development and modernization of the 
curriculum. This approach entails physical 
and virtual centers and schools and 
institutes leveraging expertise across 
multiple institutions, including national 
laboratories, and supercomputing centers.   

 Training in CS&E skills at all levels 
needs to be made available online and 
supported 24/7, making the training broadly 
accessible. This accessibility will also 
facilitate worker retraining for those 
computational scientists needing to keep up 
with new developments in computer 
architectures. Candidate topics for short 
courses include basic computer and 
programming skills, high performance 
computing skills such as programming for 
many-core and GPU, and basic data mining 
and data analysis skills. 

3) Institution-based traineeship grants 
that train graduate students and 
postdoctoral fellows in the 
multidisciplinary, team-oriented iteration 
between experiment, theory and 
computation. This procedure is rapidly 
becoming a paradigm in critical STEM 
research areas and has long been a standard 
in government laboratories and industry.  

This training could be done through 
institution-based grants large enough to 
develop a critical mass of collaborative 
students and faculty.  Dual advising from 
multiple disciplines would tighten 
multidisciplinary links. Universities and 
colleges must work hand in hand with 
government laboratories and industry to 
create internship experiences that coordinate 
with and broaden thesis research. In some 
research areas, internships in experimental 

laboratories for computationally-oriented 
students, as well as internships in 
computational laboratories for 
experimentally-oriented students, can best 
develop the scientific and communication 
skills to excel in the 21st century research 
environment, including sustainable 
approaches to software engineering, 
verification, validation, and uncertainty 
quantification, and reproducibility. 

4) Coordination of the substantial 
resources of multiple agencies, government 
laboratories, supercomputer centers and 
industry. Such coordination is essential for 
accelerating progress in CS&E education 
and removing a critical bottleneck in 
undergraduate, graduate, and postgraduate 
education. A pan-agency/lab program could 
match undergraduate and graduate students 
to industry co-op opportunities, “summer 
camps,” and internships at supercomputer 
centers and elsewhere. As part of this effort, 
undergraduates and educators everywhere 
should be able to view the skills that are 
expected for qualified applicants. Such 
placement is currently performed on an ad 
hoc basis, relying on personal contacts that 
may or may not be available at any given 
institution or in any given situation. Such a 
program could serve as an information 
center for opportunities and fellowships for 
on-site, on-line, and virtual courses, 
ensuring that these resources are universally 
available and easy to locate. 

5) Transitional grants to foster a broader 
and more diverse workforce and to 
encourage the very best students to continue 
in CS&E careers. Federal agencies must 
help facilitate the transition of exceptionally 
talented graduate and postdoctoral students 
in CS&E to permanent positions in 
academia as well as industry and 
government/national labs. New types of 
federal grants that are portable, flexible, tied 
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to the individual, and carry the recipient – 
with appropriate mentoring and checkpoints 
– through the equivalent of tenure, would 
demonstrate a long-term commitment to the 
CS&E discipline to universities and labs. By 
demonstrating the ability to generate long-
term funding in CS&E to support one’s 
research program from day one, 
computational scientists and engineers 
should pose less of a perceived “risk” to 
institutions trying to evolve structurally to 
better support 21st century cyber science 
research and education.  

6) Sustainable, permanent programs in 
CS&E that support CS&E as a discipline in 
its own right. These programs are needed at 
all funding agencies to demonstrate a long 
term commitment to supporting CS&E 
research. This proof of commitment is 
essential to encourage new cyber science 
workers to enter the field of CS&E, and it is 
essential to support universities in the 
creation of new permanent positions and 
programs in CS&E. At NSF, OCI should 
establish a permanent program in CS&E as 
a core mission for the Office, in partnership 
with the Directorates. 

 

The overall effect of the needed 
approaches to CS&E education, training and 
workforce development described above 
would be (1) to increase the size and 
diversity of the CS&E workforce; and (2) to 
modernize CS&E curricula with the 
knowledge and skills reflective of 21st 
century cyberinfrastructure. The impacts 
should be felt across the entire STEM 
undergraduate and graduate curriculum at 
colleges and universities nationwide.  Note 
that each of the approaches outlined above 
pays particular attention to issues of 
scalability, accessibility, and engagement of 
government and industry. 

7.5 Summary 

A shortage at all levels of appropriately 
trained people in computational and 
analytical methodology is a major barrier to 
progress in most areas of science and 
engineering, and a serious workforce issue. A 
broad range of coordinated efforts could be 
initiated to address these problems. Such 
efforts should (1) increase the size and 
diversity of the CS&E workforce; and (2) 
modernize the CS&E curricula with the 
knowledge and skills reflective of 21st century 
cyberinfrastructure.  

The impacts of broadening and 
modernizing our CS&E educational 
infrastructure will be felt across the entire 
STEM undergraduate and graduate 
curriculum. That infrastructure will need to 
be accessible to colleges and universities 
nationwide. In our recommendations, we 
have paid particular attention to issues of 
scalability, accessibility, and engagement of 
government and industry. 

7.6 Recommendations 

Our nation is losing its leadership 
position in CS&E among our principal 
competitors in the industrialized world. Much 
of the traditional compartmentalization of 
knowledge, both within our major 
universities, and to an extent within NSF 
itself, is not well suited for interdisciplinary 
research vital to CS&E. It is important that 
actions be taken by NSF to address those 
issues. 



 69

 
 
RECOMMENDATIONS:   
NSF should support education, training, and workforce development through the 
following grants and new programs: 

1) Educational excellence grants at the undergraduate and graduate levels, 
which include funding for the development of new, courses, curricula, and 
academic programs in CS&E that address the computational and analytical skills 
required in virtually all STEM disciplines. (i) Courses should be carefully developed 
and well-tested, with the objective of making the materials available to all colleges 
and universities in a form that is easy to extend and modify. (ii) Work on a few key 
foundational undergraduate courses is urgently needed. At the same time, the 
issues of integrating CS&E more broadly into the undergraduate STEM curriculum 
are complex and require study. (iii) Summer institutes emphasizing basic CS&E 
skills, as well as research activities, and REU/RET sites focusing on CS&E are 
recommended for undergraduates and for exceptionally talented high school 
students.  

2) Support for the formation of virtual communities engaged in CS&E education, 
including virtual entities leveraging expertise across colleges, universities, national 
and government laboratories, and supercomputing centers. In particular, training, 
in the form of short courses in core skills at all levels should be available online 
and supported 24/7, making the training broadly accessible. Candidates for short 
courses should include (i) basic computer and programming skills; (ii) HPC skills: 
programming and multicore, many-core, GPU; (iii) basic data mining and data 
analysis skills. 

3) Institution-based traineeship grants that train graduate students and 
postdoctoral fellows in the multidisciplinary, team-oriented iteration among 
experiment, theory, and computation that is rapidly becoming a paradigm in critical 
STEM research areas and that has long been a standard in government 
laboratories and industry. The grants should be large enough to develop a critical 
mass of collaborative students and faculty. 

4) The creation of a pan-agency facility or program to coordinate training in 
CS&E education, including training for young scientists and graduate students in 
communicating their work to an audience of non-specialists, and which provides a 
service to match students to industry co-op opportunities and to summer institutes 
and internships at supercomputer centers and elsewhere, and which serves as an 
information clearing house for opportunities and fellowships for on-site, on-line, 
and virtual courses. 
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5) Grants that facilitate the transition of exceptionally talented graduate and 
postdoctoral students in computational science and engineering to permanent 
positions in academia as well as industry and government/national labs.  

6) Sustainable, permanent programs in CS&E research and education at all 
funding agencies to demonstrate a long-term commitment to supporting CS&E as 
a discipline, thereby creating reliable partners for universities seeking institutional 
transformational change and for trained workers seeking careers in CS&E.  
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8.0 GRAND CHALLENGE COMMUNITIES 

AND VIRTUAL ORGANIZATIONS  

  

8.1 The Role of Virtual 

Organizations in Grand 
Challenge Communities  

As noted in the Introduction, 
collaboration has long been an essential 
aspect of research. Grand Challenge 
Communities face special challenges and 
opportunities with respect to collaboration. A 
separate report to the Advisory Committee for 
Cyberinfrastructure from Group 2 of the 
Grand Challenges Task Force will address 
this history and argue for a more assertive 
NSF response to the broad challenge of 
improving the means for collaboration. 
Likewise, previous chapters of this report 
have explained the revolutionary effects on 
research from cyberinfrastructure in high 
performance computing, improved software, 
advanced models and algorithms, effective 
management of scientific data, new 
capabilities in visualization, and specialized 
education and training to enable effective 
development and use of cyberinfrastructure. 
This chapter addresses the role of 
cyberinfrastructure as a complementary and 
enabling asset in the coordination and 
execution of research activity, especially as 
captured in the idea of virtual organizations. 

It might seem curious that a discussion of 
virtual organizations appears in a report 

coming from the NSF Office of 
Cyberinfrastructure, but technological 
innovation often gives rise to organizational 
and social innovation. An office charged with 
innovations in cyberinfrastructure should also 
support and engage the accompanying virtual 
organizations they foster. OCI’s investment in 
virtual organizations is a down-payment on a 
larger set of investments that need to be made 
across NSF and in other federal funding 
agencies as new ways of doing research 
evolve. Cyberinfrastructure has changed the 
way we think about how research can be 
conducted. Computer power, data storage, 
and other elements of cyberinfrastructure 
have improved dramatically in a short period 
of time. Unfortunately, the social and 
institutional environments of universities, 
departments, laboratories, funding agencies, 
and so forth often evolve more slowly. New 

      Virtual organizations 
connect people across 

disciplinary, institutional, and 
geographic boundaries.  

Cyberinfrastructure can enable 
virtual organizations, potentially 

revolutionizing science and 
engineering work. 

8 Grand Challenge Communities 
and Virtual Organizations 
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ways of organizing the assets brought to bear 
on Grand Challenges are necessary to 
optimize the community part of Grand 
Challenge Communities. At the moment, 
slow progress on these coordination and 
execution issues is a rate limiter to research 
progress. 

Virtual organizations connect people 
across disciplinary, institutional, and 
geographic boundaries.  Cyberinfrastructure 
can facilitate such connections through 
communications (e.g., teleconferencing, 
email), shared resources (e.g., data 
repositories), and tools (e.g., workflow 
coordination systems). Cyberinfrastructure 
can also mediate collaborations by linking 
observational instruments, data streams, 
experimental tools, and simulation systems 
with individuals, who might be alone or in 
groups, but who as a community are 
distributed across the globe. 
Cyberinfrastructure can enable virtual 
organizations, potentially revolutionizing the 
way science and engineering are practiced. 
This is not primarily a technological 
revolution, although technology makes it 
possible. It is, rather, a sociotechnical 
revolution in that it involves representing 
interlinked social and technical changes in 
research across all fields of science and 
engineering. OCI cannot address all aspects 
of this revolution, but its position in the 
Office of the Director allows it to work across 
directorates to address some aspects. 
Certainly OCI should continue its leadership 
role in this area.  

8.2 Examples of Virtual 

Organizations in Grand 
Challenge Communities  

 Four examples from the recent history of 
science and engineering research provide an 

indication of how important 
cyberinfrastructure can be in facilitating 
collaboration in different kinds of grand 
challenges. 

8.2.1  ATLAS at CERN 

 High-energy physics has a long history of 
collaboration in creating and accessing 
unusual and expensive equipment such as 
particle accelerators. It has adopted modern 
cyberinfrastructure and evolved sophisticated 
coordination mechanisms that allow a 
distributed community of scientists to 
collaborate across long distances and over 
significant periods of time. The ATLAS (A 
Torroidal Lhc ApparatuS) Project at the 
Large Hadron Collider at CERN in Europe 
(http://atlas.ch/) is centered on a large, custom-
made detector buried along a 27-km circular 
tunnel that accelerates hadronic elementary 
particles to nearly the speed of light. The 
particles collide within the detector, which 
measures the momentum and energy carried 
by the particles to aid in the search for the 
elusive Higgs particle, evidence of 
supersymmetry and other important aspects 
of contemporary high-energy physics. 
ATLAS will detect 100 interesting “events” 
per second out of about one billion that occur, 
and channel data into a sophisticated, tiered, 
distribution system. Tier 0 at CERN takes in 
the raw data, reconstructs the data in ways 
investigators can use, and sends the data to 
the Tier 1 sites - ten nodes in different 
countries - where they are distributed further 
to investigators through Tier 2 sites 
(http://cerncourier.com/cws/article/cern/31519). 

 ATLAS involves nearly 3,000 
investigators from nearly 40 countries 
working in dozens of labs, institutes, 
departments, and universities. ATLAS started 
before the term Virtual Organization became 
popular, but it has been highly collaborative 
from the start through the cyberinfrastructure 
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of the ATLAS Collaboratory Project 
(http://atlascollab.umich.edu/). ATLAS, and the 
work of high-energy physics generally, 
demonstrates the long-standing importance of 
cyberinfrastructure-enabled collaboration in 
pursuit of Grand Challenges. The early 
development of the World Wide Web at 
CERN around 1990 is a part of this history, 
with consequences the entire world can now 
appreciate. 

8.2.2  The George E. Brown Network for 
Earthquake Engineering Simulation 
(NEES) 

 NEES is a shared national network 
linking 14 research sites distributed across the 
United States with collaborative tools, data 
support, and earthquake simulation software 
(https://www.nees.org). Earthquake engineering 
experimental research was traditionally 
conducted at specialized facilities – shake 
tables, tsunami tanks, etc. – within the field’s 
subdisciplines (geology, civil engineering, 
mechanical engineering, etc.). NEES employs 
cyberinfrastructure to facilitate new and more 
productive forms of collaboration, making 
better use of facilities and encouraging 
interaction among the field’s specialties. This 
collaboration requires coordination across 
states, agencies, university systems, and 
departments to enable access to what were 
previously narrowly-held assets. Issues of 
structure, governance, funding, and 
ownership rights had to be negotiated and 
agreed upon for NEES to function.  

 NEES touches on two Grand Challenges. 
One is the need to improve the engineering of 
structures in a world subject to dramatic 
seismic events, such as the 2004 earthquake 
and tsunami in the Indian Ocean and the 2010 
earthquake in Haiti, each of which killed 
more than 200,000, displaced many more, 
and caused billions of dollars in damage. 

Another is to bring together previously 
fragmented fields of research to achieve 
greater integration, enabling these fields to 
tackle previously elusive Grand Challenges. 
Many other research communities remain 
fragmented, moving only slowly toward 
coalescence.  

8.2.3  The Community Earth System 
Model (CESM) 

 The CESM is a fully-coupled 
(atmosphere, ocean, land, biosphere, and 
cryosphere) global climate model with state-
of-the-art computer simulations of the earth's 
past, present, and future climate states 
(http://www.cesm.ucar.edu/). It is sponsored by 
two different federal entities, the National 
Science Foundation (NSF) and the 
Department of Energy (DOE), with different 
mandates, policies, and procedures, but with 
overlapping interests. It is administered by 
the National Center for Atmospheric 
Research (NCAR). The CESM was built as a 
community of practice with the goal of 
collaborative learning and investigation of 
the earth’s climate system. It is directed by a 
Scientific Steering Committee (SSC) of 
researchers from many institutions, led by a 
Chief Scientist, and advised by a board of 
scientific advisors also drawn from many 
institutions. Voluntary working groups 
involving yet more scientists from different 
institutions propose model components to the 
SSC. The entire community meets once a 
year at the CESM Workshop to plan work 
and deal with challenges. Face-to-face 
meetings are augmented by heavy use of 
teleconferencing and virtual meeting 
technology. The CESM has improved 
understanding in a number of disciplines 
related to climate change, and has informed 
policy through national and international 
assessments such as the Intergovernmental 
Panel on Climate Change.  
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 The CESM is a Virtual Organization that 
embodies the current state of knowledge 
about the component processes of the earth 
system. A knowledgeable core team of 
scientists and software engineers work 
together to configure and validate the model 
in preparation for public release. The 
participants come together through the virtual 
organization because their own interests 
cannot be advanced except in conjunction 
with a state of the art, coupled model running 
on high performance computers. Unlike 
ATLAS, a physical instrument that measures 
physical phenomena, or NEES, a set of 
physical instruments that simulate physical 
phenomena, the CESM is an abstraction that 
attempts to capture and reflect an enormously 
complicated set of physical phenomena 
interacting with one another. This is a new 
and exciting frontier of research that cannot 
be done any other way. 

8.2.4  TeraGrid 

 TeraGrid is one of the world’s largest, 
most comprehensive distributed 
cyberinfrastructure facilities for open science 
research (https://www.teragrid.org/). It is an 
NSF-funded network of computational 
resources at 11 resource provider sites and 6 
software integration sites distributed 
throughout the United States. It includes high 
performance computers, massive data storage 
systems, visualization resources, data 
collections, and tools connected by high-
bandwidth networks and integrated by 
coordinated policies, operations, user 
support, education, outreach, and training. 
TeraGrid provides researchers with access to 
more than 60 petabytes of data storage and 
more than two petaflops of computing 
capacity that can be brought to bear on any 
science or engineering project. It supports 
complex modeling, simulation, and 
visualization in multiple scientific domains 
for multiple user communities, including 

chemistry, astrophysics, atmospheric science, 
biochemistry, biology, mathematics, earth 
sciences, electrical and communication 
systems, industrial engineering, materials 
research, mechanical engineering, medicine, 
meteorology, pharmaceutical science, 
physics, social science, and seismology. 

 Each resource provider secures its own 
funding and manages its own facilities and 
equipment, but also contributes to the 
common pool of computational resources, 
generally with support from NSF. 
Coordination of TeraGrid policy and 
planning, operation and user support, and 
software and services is the responsibility of 
the Grid Infrastructure Group (GIG). The 
GIG is led by the University of Chicago and 
includes members from the resource 
providers. Direction is provided by the 
TeraGrid Forum, consisting of the Principal 
Investigator of each resource provider and 
the GIG. In a manner similar to the CESM, 
each working group of scientists, managers, 
and technical professionals reports to a GIG 
member on issues of common concern and 
for making recommendations to the overall 

TeraGrid. Management and planning is 
coordinated via weekly and biweekly 
teleconferences and quarterly face-to-face 
meetings. Unlike ATLAS, NEES, and 
CESM, TeraGrid is a general-purpose 
cyberinfrastructure serving any domain of 
science. It operates as a Virtual Organization 

TeraGrid is a general-purpose 
cyberinfrastructure serving any 
domain of science. It operates 

as a Virtual Organization to 
provide resources for 

investigators. 
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to provide resources for investigators. 

8.3 Virtual Organizations in Grand 

Challenges of the Future 

 OCI’s focus on virtual organizations 
recognizes the importance of 
cyberinfrastructure and collaboration as 
complementary assets, and attempts to 
accelerate the process of technological 
development and learning required to exploit 
the opportunities to improve productivity and 
effectiveness in research work.  OCI draws 
upon its expertise in virtual organizations to 
accelerate the transfer of knowledge about 
successful and unsuccessful collaboration and 
coordination efforts. Deployment of this 
knowledge enables NSF to better support 
potential nascent Grand Challenge 
Communities.  

 The sociotechnical coordination of 
research is rightly seen as part of the 
“science” in the recently created program on 
the Science of Science and Innovation Policy, 
focusing on improving collaboration and 
stimulating creative potential [55]. 
Coordination, however, goes beyond policy 
and takes a central role in the routine activity 
at the heart of research. OCI’s virtual 
organizations program recognizes this need, 
and should continue to refine its efforts 
through Virtual Organizations as 
Sociotechnical Systems (VOSS) program 
solicitations, while adding new activities to 
summarize and deploy best practices for 
virtual organizations in research [56].  

8.4 OCI and Virtual Organizations 
 OCI has already taken a leadership role 
by creating NSF’s first focused program on 
virtual organizations and by working with the 
SBE and CISE Directorates. This leadership 
role should continue, although, as noted in the 

larger report on collaboration, OCI cannot be 
expected to cover all of the topics in this 
broad area. OCI’s continued leadership can 
help to catalyze the development, 
implementation, and evolution of a 
functionally complete national 
cyberinfrastructure that integrates physical, 
organizational, and cyberinfrastructural assets 
and services to support virtual organizations. 
OCI can also promote and support the 
establishment of world-class virtual 
organizations that are secure and efficient. 
Finally, it can support the development of 
common cyberinfrastructure resources, 
services, tools, and knowledge for effective 
and efficient, end-to-end cyberinfrastructure 
across all science and engineering fields.  

 There are two ways OCI can advance 
virtual organizations within NSF. First, OCI 
can expand its sponsorship of technological 
and organizational development relevant to 
virtual organizations within OCI and across 
NSF directorates. In addition to the VOSS 
solicitation, OCI should remain involved in 
NSF-sponsored development of 
collaboratories, digital repositories, 
observatories, science and engineering 
gateways, computational grids, and synthesis 
centers. OCI’s active participation in the 
cross-directorate initiative Cyber-Enabled 
Discovery and Innovation (CDI) has helped 
promote innovation in computational thinking 
(http://www.nsf.gov/crssprgm/cdi/). In addition to 
virtual organizations, CDI embraces 
“understanding complexity” and moving 
“from data to knowledge.”  As CDI draws to 
a close, OCI will participate in a new cross-
directorate program, tentatively titled 
Research Coordination Networks. This effort 
should continue the advance of virtual 
organizations across disciplinary, 
organizational, institutional, and geographical 
boundaries. 

 Second, OCI should gather what has been 
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learned about virtual organizations and bring 
best practices into the requirements and 
specifications of research and development. 
The best practices, as well as the technologies 
and other complementary elements of virtual 
organizations, can be incorporated by NSF 
into solicitations and reports, expectations of 
program officers, and the expertise of 
reviewers, panelists, committees of visitors, 
and PIs. This approach should stimulate the 
development of proposals that include 
sensible plans for virtual organizations as 
well as criteria for assessments of success. 
OCI can facilitate the creation and 
maintenance of resource repositories, 

workshops, and meetings to disseminate 
information about best practices in 
distributed, interdisciplinary, cyberinfrastruc-
ture-enabled virtual organizations.  

8.5 Recommendations 

The benefits of virtual organizations to 
scientific and engineering productivity are 
pervasive and difficult to single out, as are the 
issues relative to integrating them into a 
large-scale cyberinfrastructure. These and 
related issues are worthy of further study.  

 

 
RECOMMENDATIONS: 
The NSF should initiate a thorough study outlining best practices, barriers, success 
stories, and failures, on how collaborative interdisciplinary research is done among 
diverse groups involved in Grand Challenge projects.  

The NSF should invest in research on virtual organizations that includes:  
1) Studying collaboration, including virtual organizations, as a science in its own 

right; 
2) Connecting smaller virtual organizations to the large-scale infrastructure by 

providing supplementary funds to such projects, supporting development of tools, 
applications, services, etc. with a mandate to disseminate those elements to other 
communities and users; 

3) Investing in systematic, rigorous project-level and program-level evaluations to 
determine the benefits from virtual organizations for scientific and engineering 
productivity and innovation; 

4) Encouraging NSF program officers to share information and ideas related to 
virtual organizations with training and online management tools. 
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9.0 CONCLUDING COMMENTS 

  

Formidable science and engineering Grand Challenges that affect our nation’s welfare, security, 
and competitiveness loom ahead that can be addressed by advances in CS&E enabled by advances 
in cyberinfrastructure. These advances will require the development of collaborative communities 
of researchers from diverse areas of science and engineering, and innovative virtual organizations, 
and this in itself will represent a challenging undertaking. The National Science Foundation, 
through the Office of Cyberinfrastructure, can play a fundamental role in addressing these 
challenges and advancing the frontiers of scientific discovery and enabling innovative advances in 
engineering. It is hoped that this study provides insight and recommendations that will be useful in 
structuring strategic programs within the Foundation that will aid in accomplishing these ends. 

9 Concluding Comments 
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Appendix A:  OCI – GCC’s and VO’s Workshops 
August 25, 2009 - Workshop Attendees 

 
Workshop Organizers  

J. Tinsley Oden (U Texas-Austin)   Omar Ghattas (U Texas-Austin) 
John Leslie King (U Michigan)   Barry I. Schneider (NSF)  
Jon Bass (U Texas-Austin) 

 
Universities 

Klaus Bartschat (Drake U)   Thom Dunning (U Illinois – UC)  
Donald Estep (Colorado State U)  Sharon Glotzer(U Michigan)   
Michael Gurnis (Caltech)   James Kinter (IGES Inc.)   
C. William McCurdy (UC Davis)  Abani Patra (U Buffalo)    
Linda Petzold (UC Santa Barbara)  Tamar Schlick (New York U)   
Klaus Schulten (U Illinois – UC)  Victoria Stodden (Yale Law School)   
Cathy Wu (U Delaware)   Katherine Yelick (UC Berkeley) 
 

Government Laboratories 
John Drake (ORNL)  

 
NSF 

Paul Messina (Consultant, OCI)  Suzanne Iacono (CISE/CNS) 
Abani Patra  (OD/OCI)   Edward Seidel (MPS/OAD) 
Barry I. Schneider (OD/OCI)  Judith Sunley (SBE/OAD) 
Susan J. Winter (OD/OCI)   

Several other NSF participants. 
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April 22-23, 2010 - Workshop Attendees 

 
Workshop Organizers  
  J. Tinsley Oden (U Texas-Austin) Chair  Omar Ghattas (U Texas-Austin) Co-Chair 
  John Leslie King (U Michigan) Co-Chair Barry I. Schneider (NSF) Liaison 
  Thom Dunning (U Illinois - UC)   Donald Estep (Colorado St)   
  Michael Gurnis (Caltech)   Abani Patra (U Buffalo)  
  Linda Petzold (UC Santa Barbara)  Victoria Stodden (Yale Law School)  
  Cathy Wu (U of Deleware)    

 
Universities 
  Guy Almes (Texas A&M)   Lorena Barba (Boston U) 
  Jon Bass (U Texas-Austin)    Jerry Bernholc (North Carolina State U)  
  Warren Bicknell Mori (UCLA)   George Biros (Georgia Tech)    
  James Brasseur (Penn State)   Richard Brower (Boston U)    
  Hai-Ping Cheng (U Florida)   Ronald Cohen (Carnegie Inst. of Washington)  
  Thomas Cheatham III (U of Utah)  Michael Clark (Harvard)    
  Peter Cummings (Vanderbilt)   Thomas Dietterich (Oregon State U)   
  John Drake (U of Tennessee)   Jacob Fish (Rensselaer Polytechnic Inst)   
  Robert Fisher (U of Massachusetts)  Geoffrey Fox (Indiana U)    
  James French (U of Virginia)   Lincoln Greenhill (Harvard)    
  Gwen Jacobs (Montana State U)  Lennart Johnson (U of Houston)   
  George Karniadakis (Brown U)   Daniel Katz (U of Chicago)    
  Alexei Khokhlov (U of Chicago)  Jeongnim Kim (UIUC)    
  Rubin Landau (Oregon State U)  Alan Laub (UCLA)     
  William Lester (UC Berkeley)   Wing Kam Liu (Northwestern U)  
  Philip Maechling (USC)   Dimitri Mavriplis (U of Wyoming)  
  W. Richard McCombie (CSH Lab.)  Richard Moore (SDSC)  
  Donald Pellegrino (Drexel University)  Ralph Roskies (PSC)  
  Karl Schulz (TACC)    Mark Shephard (Rensselaer Polytechnic Inst) 
  Valerie Taylor (Texas A&M)   Homer Walker (Worcester Polytechnic Inst)  
  Renata Wentzcovitch (U of Minnesota)  Phillip Westmoreland (U of Massachusetts) 
  Nancy Wilkins-Diehr (SDSC)   Paul Woodward (U of Minnesota)   
  P. K. Yeung (Georgia Tech)   John Ziebarth (Krell Inst) 
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Government Agencies and Laboratories 
  Randy Avent (OSD)    Amber Boehnlein (FNAL)  
  Robert Bonneau (AFOSR)   Kimberly Budil (DOE) 
  Anne Chaka (NIST)    Lee Collins (LANL) 
  Frederica Darema (AFOSR)   Mark Pederson (DOE) 
  Thomas Pinelli (NASA)   Taiching Tuan (Army) 
  Sharon Welch (LARC) 
 
Industry 
  Susan Fratkin (Fratkin Assoc.)   David Salzman (LightSpin Tech.) 
 
NSF 
  Estela Blaisten-Barojas (MPS/CHE)  Almadena Y. Chtchelkanova (CISE/CCF) 
  Clark Cooper (ENG/EFRI/CMMI)  Cheryl Eavey (SBE/SES) 
  Evelyn Goldfield (MPS/CHE)   Horst Henning Winter (ENG/CBET) 
  Daryl Hess (MPS/DMR)   Leland Jameson (MPS/DMS) 
  Bradley Keister (MPS/PHY)   Fae Korsmo (OD) 
  Jacqueline Meszaros (SBE/SES)  Eduardo Misawa (ENG/CMMI) 
  Manish Parashar (OD/OCI)   Joy Pauschke (ENG/CMMI) 
  Irene Qualters  (OD/OCI)   Thomas Russell (OD/OIA) 
  Barry I. Schneider (OD/OCI)   Edward Seidel (MPS/OAD) 
  Serdar Ogut (MPS/DMR) 
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Appendix B:  ACCI Recommendation Letter for 
the Creation of a Program in CDS&E  
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