
Assessing Reproducibility: An Astrophysical Example of

Computational Uncertainty in the HPC Context

Victoria Stodden, Matthew S. Krafczyk

August 24, 2018

Abstract

We present an experiment using the Enzo simula-
tion code on NCSA’s Blue Waters system to high-
light the importance of computational and numerical
uncertainty in scientific computing on HPC systems.
We quantify the (surprising) variability of outputs
from 200 identical simulation runs. We make two
recommendations to improve the assessment of re-
producibility of computational results: the inclusion
of computational variability measures in standard re-
porting practices; and modular software designs that
permit localized assessments of the source of compu-
tational uncertainty.

1 Introduction

Several recent efforts highlight the importance of re-
producibility for computational science [1, 2, 3, 4, 5,
6]. In this article we adopt the simplest definition of
reproducibility: using the same software and data to
regenerate the same results as in the publication [7].
This definition is, in some sense, a pre-requisite to
other notions of reproducibility, such as an indepen-
dent re-implementation of the experiment, since com-
plete computational transparency is required to rec-
oncile any meaningful differences in results. It should
surprise no one re-runnning the same code, even on
the same system and with the same random seeds and
input data, at a later date can produce different out-
put. Software libraries and versions change present-
ing application complexity issues that can even ex-
tend to the configuration of the network upon which

it relies. Hardware can change, and even without
changes can be inherently non-deterministic: I/O de-
vices report interrupts at unpredictable times which
can affect the scheduling of processes for example.
External physical processes such as cosmic rays can
flip bits in memory or control logic randomly. Con-
currency issues are present in today’s systems: ap-
plications use multiple processes, threads, and cores,
and/or rely on parallel accelerators such as GPUs.
With these system-level potential sources of uncer-
tainty, at what point can a researcher know when a
result has been satisfactorily regenerated even though
it differs from the original due to inherent system un-
certainty, or when is it a truly different result? In this
article we examine the simplest case - rerunning the
same code on the same system - and provide an ex-
ample of variability in application outcome.

We build on recent recommendations regarding the
capture and reporting of computational details in
scientific publication, specifically Recommendation 1
from [8]: “Share data, software, workflows, and de-
tails of the computational environment that generate
published findings in open trusted repositories.” We
seek to answer a subsequent question: Does satis-
fying Recommendation 1 permit a researcher in the
field to regenerate the same results as in the origi-
nal article? Or, more precisely, what is the thresh-
old at which we understand the regenerated results
to be meaningfully different from the results in the
original article, given the same software and input
data? We illustrate the nonobviousness of the an-
swer in the next section with an illustration of vari-
ability in simulation output in HPC using the Enzo
adaptive mesh refinement simulation code [9]. We

1



then suggest two solutions to improve assessments of
reproducibility: including bounds based on compu-
tational uncertainty with published results (thereby
extending Recommendation 1) and, modifying scien-
tific software design to allow for the localization of
sources of variability to be identified and traced. We
conclude with a discussion of future work.

2 Computational Uncertainty
in an HPC System

In order to investigate impact of non-determinism on
scientific conclusions, we surveyed several scientific
fields searching for codes which either used deliberate
non-determinism for stochastic simulation purposes
or which could introduce non-determinism through
the use of parallelized simulation algorithms with re-
duction operations. We chose the Enzo Astrophysical
simulation system since it satisfies both these criteria
and the simulations are carried out over a long physi-
cal time scale during which small numerical errors or
deliberate stochasticity can accumulate to produce
significant shifts in final galaxy properties. We then
designed a computational experiment as follows. Us-
ing the Blue Water system at NCSA, we repeated a
simulation 200 times to produce the same scientific
output. We performed a cosmology simulation using
an n-body simulation for dark matter and an adap-
tive mesh to track gas dynamics. We first generated
initial conditions: initial grid and particle fields using
the inits tool from the Enzo software package.

2.1 Experiment 1

These initial conditions were generated for a root grid
with a resolution of 32 on a side, a size of 10 Mpc/h
per side, 7 levels of adaptive mesh refinement, and
periodic boundary conditions. Enzo was then config-
ured to treat these initial conditions at z = 99 and to
run the simulation to z = 0 or the modern day. The
inits tool was run a single time. The experiment was
then repeated 200 times using the initial conditions
obtained from the inits tool. Once the simulation
finished, the rockstar [10] halo finding algorithm and
the yt [11] tool suite was used to determine locations

and properties of galactic halos which had formed.
The scientific output of interest in this case is the
mass and location of the various galactic halos and
more specifically, the largest galactic halo.

2.2 Experiment 2

To test whether the computational tool chain had
an effect on the eventual non-determinism, we per-
formed experiments using different compiler and op-
timization levels. For each compiler and optimization
level we performed the simulation 200 times in order
to extract mean and variance statistics for the largest
halo.

2.3 Results

Given the output of the simulation runs, we report
the mean of these properties and variance of the
‘same’ halo across all simulations. This was done
using a ‘superhalo’ algorithm which matched halos
across all 200 simulations using a combined metric
of mass, position (x, y, z), and virial radius. Only
halos which formed a ‘mutual match’ across all 200
simulations are grouped together into a superhalo. A
‘mutual match’ is formed between halo A1 from sim-
ulation A and B1 from simulation B when d(A1, B1)
is less than d(A1, Bn) for all other n in simulation
B and d(An,B1) for all other n in simulation A.
Measured properties of the largest halo along with
performance metrics are given in Table 1, as well as
graphically in Figures 2a and 2b. The figures in 1
showcase some stark differences which can arise, from
seemingly identical simulation runs.

2.4 The Toolchain and Workflow

Software for this experiment was managed using the
Spack [12] package manager. Once appropriate pack-
age definition files were created for Enzo, yt, and
rockstar, changing compiler and optimization levels
was relatively straightforward. The final dependency
tree is also now preserved to be used by a scientist at
a later date. The code and data used to produce
these results is available at https://github.com/

victoriastodden/ComputationalUncertaintyHPC.

2



(a) (b)

Figure 1: We show the result of two Enzo cosmological simulations with identical initial conditions and
simulation properties in the two panels. The galaxy gas density is projected onto the x-y plane. The white
circles indicate detected galactic halos, representing the size (and mass) of each halo. Note for example that
halo 49 exists in Figure 1a, and is missing in Figure 1b. This is because minute numerical variations have
affected the history of the second simulation to the point that the mass clump where halo 49 should be never
became gravitationally bound and hence detectable by the rockstar algorithm. Also note the distances and
positions of several of the galaxies are subtly different in the two panels. Close inspection of some of the
halos will also reveal different orientations in the two simulations.

(a) Mass distribution of the largest galaxy (b) X position distribution of the largest galaxy

Figure 2: The two panels show the variability of properties of the largest galaxy from 200 Enzo cosmology
simulations. These simulations were performed using the gcc compiler version 6.2.0 with ‘high’ category
optimizations (‘-O2’). The mass of this galaxy can vary by as much as 0.5% of the mean value.

3



Table 1: We show the average mass and standard error of the largest halo for each simulation and for each
compiler/optimization combinations. For the cases intel/normal and cce/none note that the average mass is
significantly different from ∼2.27 · 1046 g, since the superhalo algorithm was unable to match this large halo
across all 200 simulations, indicating that it was either too different to match, the final galactic geometry
was different enough to stop a match, or this galaxy simply did not exist in at least one of the simulations.

Compiler Optimization
Average Average Mass Std Err of Mass
Walltime of Largest Halo of Largest Halo

gcc@6.2.0

None ∼ 22h 2.27397 · 1046 g 1.06934 · 1044 g
Normal ∼ 10h 2.26675 · 1046 g 1.21864 · 1044 g

High ∼ 9h 2.27468 · 1046 g 1.19946 · 1044 g

intel@16.0.3

None ∼ 39h 2.27147 · 1046 g 1.58783 · 1044 g
Normal ∼ 7h 4.33035 · 1045 g 1.24854 · 1044 g

High ∼ 6h 2.26850 · 1046 g 1.41447 · 1044 g

pgi@16.9.0

None ∼ 14h 2.27006 · 1046 g 1.21608 · 1044 g
Normal ∼ 13h 2.27201 · 1046 g 1.32688 · 1044 g

High ∼ 10h 2.27125 · 1046 g 1.1913 · 1044 g

cce@8.5.5

None ∼ 16h 4.31151 · 1045 g 1.35333 · 1044 g
Normal ∼ 6h 2.27129 · 1046 g 1.26159 · 1044 g

High ∼ 5h 2.27230 · 1046 g 1.34160 · 1044 g

3 Two Solutions Ideas

3.1 Assess and Report Computational
Uncertainty Measures

Ideally, each experiment could be run a large num-
ber of times and error bars that assess computational
uncertainty.reported alongside results. Of course
this is not generally practical in terms of compute-
time, so estimates of these metrics could be made
by experiment-appropriate modifications that reduce
runtimes: downsampling the parameters of the simu-
lation, reducing the number of iterations, or running
a subpart of the simulation that is deemed most likely
to produce computational uncertainty. Standards
have been proffered that encourage the reporting of
computational details (such as the ICERM standards
[13, 14]) and we suggest including estimates of com-
putational uncertainty as part of standard reporting.
The well-known notions of Uncertainty Quantifica-
tion and Validation & Verification should be aug-
mented to include computational uncertainty.

3.2 Software Design Specifications

The example given in this article could satisfy Rec-
ommendation 1 and the ICERM standards and still
produce variable output. Software design that per-
mits the localization of variability to particular as-
pects or parts of the code could allow improved as-
sessment of computational variability. Many appli-
cations embed state information in their output, to
help the user with debugging and general provenance,
however this may not give sufficient information to
assess whether results that differ bitwise are scientif-
ically equivalent. Software design (e.g. modularity)
that permits the user to source aspects of computa-
tional uncertainty by code inspection could allow for
improved assessments of expected output variability.

4 Conclusions & Future Work

We present an example of simulation output variabil-
ity due to computation. We will generalize this ex-
ample to other codes and scientific fields, and un-
derstand the accuracy of computational uncertainty
estimates from simulations with reduced runtimes.

4



References

[1] V. Stodden, F. Leisch, and R. D. Peng, Imple-
menting Reproducible Research, ser. Chapman
& Hall/CRC The R Series. Chapman and
Hall/CRC, April 2014.

[2] L. A. Barba, “Terminologies for reproducible re-
search,” ArXiv e-prints, Feb 2018.

[3] D. L. Donoho, A. Maleki, I. U. Rahman,
M. Shahram, and V. Stodden, “Reproducible
research in computational harmonic analy-
sis,” Computing in Science & Engineering,
vol. 11, no. 1, pp. 8–18, 2009. [Online]. Avail-
able: http://aip.scitation.org/doi/abs/10.1109/
MCSE.2009.15

[4] V. Stodden, “Reproducible research: Tools
and strategies for scientific computing,” Com-
puting in Science & Engineering, vol. 14,
pp. 11–12, 07 2012. [Online]. Avail-
able: doi.ieeecomputersociety.org/10.1109/
MCSE.2012.82

[5] P. Ivie and D. Thain, “Reproducibility in
scientific computing,” ACM Comput. Surv.,
vol. 51, no. 3, pp. 63:1–63:36, Jul. 2018. [Online].
Available: http://doi.acm.org/10.1145/3186266

[6] V. Stodden, M. S. Krafczyk, and A. Bhaskar,
“Enabling the verification of computational
results: An empirical evaluation of com-
putational reproducibility,” in Proceedings of
the First International Workshop on Practical
Reproducible Evaluation of Computer Sys-
tems, ser. P-RECS’18. New York, NY, USA:
ACM, 2018, pp. 3:1–3:5. [Online]. Available:
http://doi.acm.org/10.1145/3214239.3214242

[7] V. Stodden, “Resolving irreproducibility in em-
pirical and computational research,” IMS Bul-
letin, 2013.

[8] V. Stodden, M. McNutt, D. H. Bailey,
E. Deelman, Y. Gil, B. Hanson, M. A. Heroux,
J. P. Ioannidis, and M. Taufer, “Enhancing
reproducibility for computational methods,”

Science, vol. 354, no. 6317, pp. 1240–1241, 2016.
[Online]. Available: http://science.sciencemag.
org/content/354/6317/1240

[9] G. L. Bryan et al., “Enzo: An adaptive
mesh refinement code for astrophysics,” The
Astrophysical Journal Supplement Series, vol.
211, no. 2, p. 19, 2014. [Online]. Available:
http://stacks.iop.org/0067-0049/211/i=2/a=19

[10] P. S. Behroozi, R. H. Wechsler, and H.-
Y. Wu, “The rockstar phase-space temporal
halo finder and the velocity offsets of cluster
cores,” The Astrophysical Journal, vol. 762,
no. 2, p. 109, 2013. [Online]. Available: http:
//stacks.iop.org/0004-637X/762/i=2/a=109

[11] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory,
S. W. Skillman, T. Abel, and M. L. Norman,
“yt: A Multi-code Analysis Toolkit for Astro-
physical Simulation Data,” ApJS, vol. 192, p. 9,
Jan. 2011.

[12] T. Gamblin, M. LeGendre, M. R. Collette, G. L.
Lee, A. Moody, B. R. de Supinski, and S. Futral,
“The spack package manager: Bringing order
to hpc software chaos,” in Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis,
ser. SC ’15. New York, NY, USA: ACM,
2015, pp. 40:1–40:12. [Online]. Available: http:
//doi.acm.org/10.1145/2807591.2807623

[13] D. Bailey, J. Borwein, and V. Stod-
den, “Set the default to ‘open,” Notices
of the AMS, Accepted March, 2013. [On-
line]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.310.4101

[14] V. Stodden, J. M. Borwein, and D. H. Bailey,
“‘setting the default to reproducible’ in compu-
tational science research,” SIAM News, 2013.

5


