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Abstract

We describe multiscale representations for data observed on equispaced grids and taking
values in manifolds such as: the sphere S2, the special orthogonal group SO(3), the positive
definite matrices SPD(n), and the Grassmann manifolds G(n, k). The representations are
based on the deployment of Deslauriers-Dubuc and Average-Interpolating pyramids ‘in the
tangent plane’ of such manifolds, using the Exp and Log maps of those manifolds. The
representations provide ‘wavelet coefficients’ which can be thresholded, quantized, and scaled
much as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast
enhancement, and stochastic simulation are facilitated by this representation. The approach
applies to general manifolds, but is particularly suited to the manifolds we consider, i.e.
Riemanian symmetric spaces, such as Sn−1, SO(n), G(n, k), where the Exp and Log maps
are effectively computable. Applications to manifold-valued data sources of a geometric
nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox,
SymmLab, can reproduce the results discussed in this paper.
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1 Introduction

1.1 The Challenge

The current ‘data deluge’ inundating science and technology is remarkable not merely for the
often-mentioned volumes of data, but also for the rapid proliferation in new data types. In
addition to the old standby of simple numerical arrays, we are starting to see arrays where the
entries have highly structured values obeying nonlinear constraints.

Many such examples can be given. We have in mind data arrays of the form p(t), p(x, y), or
p(x, y, z) where t, x, y, z run through equispaced values in a cartesian grid, and p takes values
in a manifold M . Consider these examples:
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• Headings. Here p specifies directions in R2 or R3, and so M is either the unit circle
S1 ⊂ R2 or the unit sphere S2 ⊂ R3. Such data can arise as a time series of observations
of vehicle headings.

• Orientations. Here p gives ‘tripods’, i.e. orientations belonging to M = SO(3). Such data
can arise as a time series of aircraft orientations (pitch, roll, yaw).

• Rigid Motions. Here p specifies rigid motions in the special Euclidean group M = SE(3).
Such data can arise as a time series of placements of an object in space (position, ori-
entation), or as a spatially-organized array giving the displacements and orientations of
marker particles having undergone a deformation.

• Deformation Tensors. Here p is a symmetric positive definite matrix in M = SPD(n).
Spatially-organized data of this kind can arise from measurements of strain/stress and
deformation in materials science and earth science. Arrays of this kind also arise in cos-
mological measurements of gravitational lensing.

• Distance Matrices. Here each p is an n by n matrix giving the pairwise distances between
all pairs in a cloud of n points. Time series of this kind can arise as representing the
state of a swarm of maneuvering vehicles, each of which can sense its distance to all other
members of the swarm.

• Projections, Subspaces. Here p is a projector with k-dimensional range, or what is the same
thing, a k-subspace of Rn. Such values belong to the Grassman manifold G(k, n). Time
series of this kind can arise in array signal processing, where the subspace is associated
with the signal-generating sources.

The proliferation of novel data types presents a challenge: find data representations which
are sufficiently general to apply to many data types and yet respect the manifold structure.

1.2 Our Approach

In this article, our goal is to generalize wavelet analysis from the traditional setting of functions
indexed by time or space and taking real values to the case where functions, still indexed by
time or space, take values in a more general manifold M . We discuss two basic approaches:
(a) interpolatory schemes and (b) midpoint interpolatory schemes. Each gives a meaningful
generalization of wavelet analysis to the manifold case; the one second is most appropriate for
‘noisy’ data. However, strictly speaking, this is not a wavelet analysis in the traditional sense.
Our “wavelet” transform generates arrays which are organized like wavelet coefficients, stratified
by location and scale, but the values in the array are more complex. It might also be called a
pyramid transform; however, that terminology is more typically used for transforms which are
overcomplete (i.e. n data points result in more than n coefficients), whereas the transforms we
describe take n values and produce n “coefficients”.

The approach we discuss requires the computation of differential-geometric ‘Exp’ and ‘Log’
maps associated with the manifold M ; for some spaces this task will be easier than for others. We
focus here on the Riemannian symmetric spaces, where the notion of midpoint is well-defined,
and we have implemented our proposals extensively in a wide range of example spaces. The
spaces we have studied all involve in some way the general linear group GL(n).

• Subgroups of GL(n). We treat the special orthogonal group and special Euclidean group
which allow us to handle orientations and rigid motions.
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• Quotients of GL(n). We treat various quotient spaces of GL(n), including Grassmann
manifolds, Stiefel manifolds, and the special case of Spheres. These allow us to handle
subspaces of Rn and to handle headings (direction fields) in Rn.

• Jordan Algebras. We treat the manifold of Symmetric Positive Definite Matrices SPD(n),
allowing us to handle deformation tensors and diffusion tensors.

All our examples are in some way representable using the general linear group GL(n) and
the differential-geometric Exp and Log maps involve, as we show, astute use of the matrix
exponential and matrix logarithm. Taking matrix logarithm and matrix exponential as given
efficiently computable primitives, our algorithms are computationally practical, giving order
O(n) algorithms for wavelet analysis and reconstruction.

1.3 Our Contributions

In addition to developing a general approach to multiscale analysis which works for many specific
manifolds, we consider three key application areas:

• Compression: Approximately representing an M -valued dataset using few bits.

• Noise Analysis/Removal: Understanding ‘noise’ in M -valued data, representing its prop-
erties and separating noise from signal.

• Feature Extraction: Representing specific properties of an M -valued dataset in terms more
amenable to pattern recognition.

Our approach provides a unified viewpoint for these practical tasks, completely paralleling the
wavelet approaches which have proven so successful with real-valued data, and are easily imple-
mented in software. In effect, in our examples, real-valued wavelet coefficients are replaced by
matrix-valued coefficients.

At a higher level we contribute following:

1. Practical Tools. We have developed a toolbox of Matlab m-files able to handle time series
and spatial arrays of M -valued data. Called SymmLab, it is patterned after the earlier
Matlab toolboxes WaveLab [3] for wavelet analysis and BeamLab [5] for beamlet analysis.
See the companion article [1] and the website at http://www-stat.stanford.edu/̃ symmlab/.

2. Awareness of M -valued data. We make an effort to call attention to the wide range of
application areas in which manifold-valued data are now being gathered.

3. Understanding. In generalizing “wavelet” analysis from R-valued to M -valued data, cer-
tain new concepts arise which were not evident in the R case; an example is the fact that
wavelet coefficients must live in the tangent space while coarse-scale coefficients of ‘father
wavelets’ live in the manifold.

4. Inertia & Compression. The constructions we describe make geodesic motions highly
compressible. Such motions correspond to p(t) evolving in time on the manifold without
external forces; in other words, inertial motions in M . Hence, in our representation, inertial
motions are highly compressible, which has advantages for systems which often operate
inertially.
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5. Open Problems. In effect we define a class of nonlinear refinement schemes: interpolating
and average interpolating refinement schemes in the tangent space. It is empirically quite
clear that these nonlinear schemes have the same smoothness properties as their linear
counterparts. Proofs for the smoothness of the limits of those schemes remain to be found.
Perhaps this article will mobilize some interest and efforts in the direction of a solution
for these nonlinear refinement schemes.

1.4 Relation to Other Work

The work described here has been underway for five years, and was presented at a meeting on
Constructive Approximation in Charleston South Carolina, May 2001 [14], and at the meeting
on Curves and Surfaces in Saint Malo, June 2002 [15]. We are aware of several groups working on
refinement schemes for manifold data working independently of us, and will attempt to mention
them in Section 8.2. The delay in publication of our work creates the possibility that we have
not cited all relevant work; we will correct such oversights in future revisions of the manuscript.

2 Classical Multiscale Transforms

We now quickly review some basic notations and constructions associated with multiscale rep-
resentations for real-valued data, and with the properties of such constructions. We focus on
two kinds of refinement schemes and the transforms they generate.

2.1 Interpolating Approach

Each approach to multiscale representation that we describe has three ingredients: a multiscale
pyramid summarizing a function f : R �→ R across scales and locations, a refinement scheme,
showing how to impute fine-scale behavior from coarse-scale behavior, and a wavelet analysis
scheme, combining the first two elements.

2.1.1 Pyramid of Point Evaluations

Let tj,k = k/2j denote the k-th dyadic point at scale j. This collection of dyadic rationals is
dense in R, and each collection (tj,k)k at one fixed scale makes a grid Z/2j . Because of the
nesting Z/2j ⊂ Z/2j+1 this set of points is redundant; indeed

tj,k = tj+1,2k, j, k ∈ Z;

the ‘novel’ points in (tj+1,k)k not already present in (tj,k) come at the tj+1,2k+1 which fall halfway
between the points in the grid Z/2j .

Suppose now we are given a uniformly continuous function f : R �→ R. It is determined by
its values at the dyadic rationals, which can be organized into the array of point values

βj,k = f(tj,k), j ≥ 0, k ∈ Z.

This collection of values provides a multiscale pyramid – one which we will later improve. It
obeys the two-scale relation

βj,k = βj+1,2k j, k ∈ Z;

at scale j + 1, the novel information in (βj+1,k)k not already present in scale j’s array (βj,k)k

is contained in the midpoint values βj+1,2k+1. However, if f has any smoothness, βj+1,2k+1 will
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typically be close to what one would expect from the coarse-scale values. Later we define wavelet
coefficients measuring the deviation between βj+1,2k+1 and the ‘expected’ value. First we define
a notion of what to ‘expect’ at midpoints based on refinement schemes.

2.1.2 Interpolating Refinement Schemes

The Deslauriers-Dubuc refinement scheme [10, 11, 17] works as follows. Starting from real-valued
data f(k) available at the integers k, it interpolates values at all the dyadic rationals k/2j by
successive refinement through a series of stages. At the first stage, the original data, f(k), are
used to impute values at the half-integers f̃(k/2) by a two-scale refinement scheme. Afterwards
values are available at all integers and half-integers. At the second stage, the same two-scale
refinement scheme is applied to those values, yielding values at the quarter integers. And so on.
In this way, one can fill in values at all binary rationals.

At the center of the process is the Deslauriers-Dubuc two-scale refinement scheme. Let D
be an odd integer, for example 3.

In discussing two-scale refinement, we speak of the coarser scale – where values are already
known, and a finer scale – where they will be imputed. The coarser scale at the j-th stage
consists of integer multiples tj,k = k/2j of a dyadic fraction 2−j and the finer scale consists of
integer multiples tj+1,k of the next smaller fraction 2−j+1. To obtain the imputed values at the
fine scale, we recall that the points k/2j belonging to the coarse-scale grid also belong to the
fine scale grid (2k)/2j+1, so the imputations are immediate:

f̃((2k)/2j+1) = f(k/2j).

To get values at odd multiples of 2−j−1, say 2k + 1, we apply a simple local rule. We collect the
D + 1 values located at the D + 1 closest coarse-scale sites to the fine grid location of interest.
We fit a polynomial πj,k(t) interpolating those values:

πj,k(k′/2j) = f̃(k′/2j), |k′ − k| < (D + 1)/2;

(the polynomial is unique). We then evaluate the fitted polynomial in the midpoint of interest,
getting the imputed value

f̃((k + 1/2)/2j) ≡ πj,k((k + 1/2)/2j).

The process of fitting a polynomial and imputing a value is illustrated in Figure 2.1.
Results from applying this rule through several stages appear in Figure 2.2, in which a

Kronecker sequence is refined, turning a coarsely-sampled ‘spike’ into a (visually) smooth ‘bump’.

This full multiscale process results in values defined at all the binary rationals; in fact these
values are uniformly continuous and have a unique continuous extension to the reals. This
extension is not merely continuous, but Hölder regular of order R where R = R(D). See Section
2.3.1 below.

2.1.3 Interpolatory Wavelet Transform

Given an interpolatory refinement scheme, we can build a wavelet transform [11]. The two-
scale refinement scheme just discussed furnishes us with an operator which, starting from values
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Figure 2.1: Deslauriers-Dubuc Interpolation at a single scale and location. Values at four sites
k = −1, 0, 1, 2; a cubic polynomial π0,0 interpolating the values, and the imputed value at 1/2.
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Figure 2.2: Successive Applications of Two-Scale Deslauriers-Dubuc Refinement, starting from
a Kronecker sequence at the integers (red x’s). Convergence is visually evident.
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βj,k = f(k/2j), k ∈ Z, imputes values at midpoints β̃j+1,2k+1 = f̃((k+1/2)/2j); defining wavelet
coefficients by midpoint deflection

αj,k = 2j/2(f(k + 1/2)/2j)) − f̃((k + 1/2)/2j)), k ∈ Z, j ≥ 0.

= 2j/2(βj+1,2k+1 − β̃j+1,2k+1), k ∈ Z, j ≥ 0

We are explicitly measuring the difference between the observed and imputed values at midpoints
(k + 1/2)/2j halfway between coarse-scale gridpoints k/2j and (k + 1)/2j . In addition to the
fine-scale information at j ≥ 0, we need the coarse-scale information

β0,k = f(k), k ∈ Z.

Taken together, the information in the coarse-scale samples (β0,k)k, and in the wavelet co-
efficients ((αj,k)k∈Z)j≥0 allows us to reconstruct any continuous f . Indeed the information in
(β0,k)k already provides the coarse-scale samples f(k). We then use the samples (f(k))k and
apply two-scale refinement, getting imputations f̃(k + 1/2); then rewriting

f(k + 1/2) = f̃(k + 1/2) + (f(k + 1/2) − f̃(k + 1/2)),

we see that

β1,2k+1 = β̃1,2k+1 + αj,k/2j/2;

and, of course,
β1,2k = β0,k, k ∈ Z,

so that the (α0,k)k and (β0,k)k together allow us to reconstruct (β1,k)k. Continuing in this way,
we reconstruct ((βj,k)k)j≥0, i.e. we get f at all dyadic rationals.

2.2 Average-Interpolating Approach

We now turn to schemes based on averages rather than point values.

2.2.1 Pyramid of Block-Averages

Define the dyadic intervals Ij,k = [k/2j , (k + 1)/2j), j, k ∈ Z, again j is the scale parameter and
k is a location index. The intervals at a single scale partition the line, and there is the two-scale
refinement relation

Ij,k = Ij+1,2k ∪ Ij+1,2k+1.

Consider now, for a given integrable function f the pyramid of values

βj,k = Ave{f |Ij,k}, j, k ∈ Z.

This gives averages over intervals spanning a range of dyadic scales and locations, and such
information characterizes the function f . Noting that

Ave{f |[0, 1]} = (Ave{f |[0, 1/2)} + Ave{f |[1/2, 1)})/2,

we see that the pyramid is redundant, obeying the two-scale relation

βj,k = (βj+1,2k + βj+1,2k+1)/2.

Moreover, if f has any smoothness then βj+1,2k+1 is expected to be close to βj,k; we now develop
refinement schemes to predict fine-scale behavior from coarse-scale coefficients and a wavelet
transform to remove the redundancy.
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Figure 2.3: Average Interpolation at a single scale and location. Averages at five adjacent
intervals I0,k, k = −1, 0, 1, 2, a quartic polynomial π0,0 interpolating the values, and the imputed
averages at I1,0 and I1,1.

2.2.2 Average-Interpolating Refinement Schemes

Average-Interpolating (AI) Refinement works in a fashion paralleling the Deslauriers-Dubuc
scheme, but is based on local averaging over dyadic intervals Ij,k as opposed to point sampling
at dyadic points tj,k [12, 20]. It starts from averages β0,k over intervals of unit length. It then
generates data β̃j,k at finer scales by successive refinement through a series of stages. At the first
stage, averages β̃1,k are imputed for dyadic intervals of length 1/2 by the following device. We fix
D as an even integer, for example 4. We then, for each interval I0,k, collect the D+1 coarse-scale
values at integral sites k′ closest to k, and fit a polynomial π0,k(t) average-interpolating those
values:

Ave{π0,k(t) : t ∈ I0,k} = β0,k, |k′ − k| < (D + 1)/2.

We then impute by evaluating the averages of this polynomial over finer scale intervals.

b̃1,2k+�,≡ Ave{π0,k(t) : t ∈ I1,2k+�}, � = 0, 1.

See Figure 2.3.
Given imputed averages over dyadic intervals of length 1/2, we now treat all those averages as

given data at a newly-defined coarse scale and repeat the above two-scale refinement to impute
averages at the dyadic intervals of length 1/4; we next impute averages over intervals of length
1/8, and so on. The process is illustrated in Figure 2.4.

The full multiscale process results in averages defined at all the dyadic intervals; in fact
there is a unique continuous function f̃ consistent with those averages. In fact f̃ is not merely
continuous, but Hölder regular of order R where R = R(D); [12]. See Section 2.3.1.
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Figure 2.4: Successive Applications of Two-Scale Average-Interpolating Refinement, starting
from a Kronecker sequence at the integers. Convergence is visually evident.
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2.2.3 Average-Interpolating Wavelet Transform

The average-interpolating refinement scheme also leads to a wavelet transform; [12]. The two-
scale refinement operator gives a way to pass from coarse-scale averages (βj,k)k to imputed
fine-scale averages (β̃j+1,k)k. We then define wavelet coefficients

αj,k = 2j/2(βj+1,2k+1 − β̃j+1,2k+1), k ∈ Z, j ≥ 0.

These measure the deviation between the behavior of fine-scale averages and the anticipated
behavior imputed from coarse-scales.

Equipped with (β0,k)k and ((αj,k)k∈Z)j≥0, we can reconstruct f by a pyramid process. We
start with the coarse-scale averages (β0,k) and coarse-scale wavelet coefficients (α0,k) and combine
them to produce averages

β1,k = Ave{f |I1,k}, k ∈ Z.

Indeed, we simply apply the two-scale refinement operator to the (β0,k), obtaining imputed
averages (β̃1,k)k and then set

β1,2k+1 = β̃1,2k+1 + 2−j/2α0,k;

we also set
β1,2k = (2β0,k − β1,2k+1).

This enforces the coarse/fine consistency constraint

β0,k = (β1,2k + β1,2k+1)/2.

Then, we have reconstructed all averages at scale j = 1. Repeating this process, we obtain
averages at scale j = 2, then at scale j = 3, etc. The function f is given as the limit of these
averages.

2.3 Properties of Wavelet Constructions

These multiscale constructions have 3 key properties.

2.3.1 Smoothness

The fundamental and surprising fact about both refinement schemes – AI and DD – is the
smoothness of refinement limits. Iterative two-scale refinement, applied to data at a fixed coarse
scale, yields a sequence of imputed values consistent with a smooth function, having R continuous
derivatives, where R depends on the degree D and on the type of scheme (AI/DD). Deslauriers
and Dubuc showed that, for the DD scheme, the four-point neighborhood gave CR solutions
with R = 1.99+. For the AI scheme R(5) is almost 2 as well [12]. Moreover, with increasing
values of D, the regularity increases, growing roughly proportionally to D. See [7, 38].

It follows from this that, for either the DD or AI wavelet transform, if the wavelet coeffi-
cients vanish beneath some fixed scale, then the object reconstructed from those coefficients will
have CR smoothness, for the same R as the refinement scheme. So setting fine-scale wavelet
coefficients to zero is a kind of ‘smoothing’ operation.

10



2.3.2 Coefficient Decay

We mention two decay properties of wavelet coefficients:

• If f(t) follows a polynomial of degree D or less, the wavelet coefficients vanish. This
follows immediately from the fact that the polynomial interpolation will yield imputed
values which are perfectly accurate.

• Suppose that f(t) is an R-times differentiable function. Suppose also that the order D of
the DD or AI scheme is greater than R. Then the wavelet coefficients obey

|αj,k| ≤ C · 2−j(R+1/2), j ≥ 0.

This gives them a rather rapid decay as one goes to finer scales.

2.3.3 Coefficients of Noise

Let (zk) be a sequence of random ‘noise’ values, i.i.d. N(0, 1), say. Fix a scale J > 0, and
consider a function f which is simply piecewise constant on dyadic intervals IJ,k,:

f = zk on IJ,k.

This is a kind of ‘pure noise’ function, at least at scales 0 ≤ j < J . The AI wavelet coefficients
of such a ‘noise’ function are themselves basically noise, weakly dependent and with variance
independent of location and of scale 0 ≤ j < J . In short, the AI wavelet coefficients of ‘pure
noise’ are random but roughly the same size at all scales and locations, and roughly independent.
This fact is fundamental to wavelet-based denoising methods.

Note that the DD wavelet coefficients do not have such constant variances, in fact getting
noisier at fine scales, this makes them unsuited for noise-removal applications.

3 Multiscale Representations for Manifold-valued Data

We now develop tools to represent a function p : R �→ M , where M is a smooth manifold.
Informally this is the case p(t) where t runs through the ‘time domain’. In a later section we
will discuss the p(x, y) ‘space domain’ case. We will see that the Interpolating wavelet transform
and Average-Interpolating wavelet transform have natural analogs in this M -valued setting.

3.1 Manifold notation/concepts

We use standard notation associated with manifolds; for more details, see [26, 32]. The manifold
has at each p0 ∈ M a tangent space Tp0(M) consisting of vectors θ corresponding to derivatives
of smooth paths p(t) ∈ M , t ∈ [−1, 1], with p(0) = p0. We let d denote the dimension of the
manifold; the tangent space is d-dimensional as well.

The manifolds we are interested in all are conventionally viewed as Riemannian manifolds,
with a metric on the tangent space. If for tangent vectors θ we adopt a specific coordinate
representation θi this quadratic form can be written

∑
ij gij(p)θiθj (in the cases of interest the

metric gij is typically the trivial δij , so that the metric is Euclidean). Now, between any two
points p0 and p1 in the manifold, there is (at least one) shortest path, having arc length �(p0, p1).
Such a geodesic has an initial position – p0 – an initial direction θ/‖θ‖2, and initial speed ‖θ‖2.
Geodesics are important because they follow inertial paths on the manifold – the result of smooth
motion without external forces.
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Figure 3.5: A manifold, its tangent plane, and the correspondence between a line in the tangent
plane and a geodesic in the manifold.

The procedure of fixing a vector in θ ∈ Tp(M) as an initial velocity for a (constant-speed)
geodesic establishes an association between Tp0(M) and a neighborhood of p in M . This asso-
ciation is one-one over a ball of sufficiently small size in Tp0(M) – up to the so-called injectivity
radius ρ. The association is formally captured by the exponential map p1 = Expp0(θ). Within an
appropriate neighborhood Np0 of p0, the inverse map – the so-called ‘Logarithm map’ – is well-
defined, taking Np0 ⊂ M into Tp0(M). Formally, this correspondence is written as θ = Logp0(p1).
This correspondence is illustrated in Figure 3.5.

We are only interested in manifolds for which Log/Exp maps can be explicitly given; examples
will be provided below.

3.2 M-valued Interpolatory Approach

Clearly, the interpolatory pyramid βj,k = p(tj,k) makes just as much sense as in the R-valued
case, has the same ‘hard’ redundancies βj+1,2k = βj,k, and the same ‘expected’ redundancies
βj+1,2k+1 ≈ βj,k for smooth functions. We first discuss how to ‘predict’ coarse-to-fine on man-
ifolds, giving M -valued two-scale refinement schemes, and then describe a wavelet pyramid
(αj,k)j,k removing the redundancy from (βj,k)j,k.

3.2.1 Interpolatory Refinement on Manifolds

Given a sequence p(k), k ∈ Z taking values p(k) ∈ M , we can (often) impute data at the
half-integers by a scheme which might be called “Deslauriers-Dubuc in the tangent space”.

Fix an odd integer D, for example 3. To get an imputation p̃(1/2), we use the data p(�) at
the D + 1 integer sites � nearest to 1/2. Letting p0 = p(0), we then map these points to the
tangent plane Tp0(M) via

θ(�) = Logp0(p(�)), � = −(D − 1)/2, . . . (D + 1)/2.

The resulting θ(�) belong to a vector space and it makes sense to add, scale, subtract, and so
on. We take a basis (ej) for this vector space, getting a d-dimensional coordinate representation
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Figure 3.6: Interpolatory refinement scheme for M-valued data, at a single scale and location.
(a) Points at four consecutive times k = −1, 0, 1, 2; (b) Points mapped to the tangent plane by
the Logarithm; (c) Fitted polynomial curve, and imputed midpoint.

with coordinates (τ1, . . . , τd):

θ(�) =
d∑

i=1

τi(�)ei.

We now apply the Deslauriers-Dubuc idea to each of the real-valued sequences (τi(�))
(D+1)/2
�=−(D−1)/2,

fitting an interpolating polynomial π to each, thus obtaining a midpoint value τ̃i(1/2) for each
cooordinate. These imputed coordinates specify an imputed vector

θ̃(1/2) =
d∑

i=1

τ̃i(1/2)ei.

From this, we obtain an imputed point on the manifold by exponentiating:

p̃(1/2) = Expp0(θ̃(1/2)).

The process is illustrated in Figure 3.6, which considers the case where M is the sphere S2

in R3.
The points p(−1), p(0), p(1), p(2) on the manifold M are shown in (a). The tangent plane

Tp0(M) and the points lifted to it θ(−1), θ(0), θ(1), θ(2) are illustrated in (b). Finally, the
polynomial curve π in the tangent plane and the imputed points at θ̃(1/2) and p̃(1/2) are shown
in (c).

This process can be repeated at other sites k, obtaining p̃(k + 1/2) from p(k − (D −
1)/2), . . . , p(k + (D + 1)/2) for all k, thus filling in imputed data at all the half-integers. It
can be applied to the resulting samples/imputations at integers and half-integers to obtain im-
putations at the quarter-integers, and so on. An example is given in Figure 3.7, again where M
is the sphere S2 in R3. We have implemented this scheme on numerous manifolds (see below),
always with satisfactory results.

There is one conceivable obstacle to this approach: the data p(k) associated with a local
neighborhood may not all be capable of being mapped onto one single tangent plane. This can
happen if some of the D + 1 points are farther from p(0) than the injectivity radius of the Exp
map. Associated with a given base point p0, there will be a specific neighborhood Np0 in M
on which Log and Exp are one-to-one. If the data p(�), � = −(D − 1)/2, . . . , (D + 1)/2 do not
all lie inside that neighborhood, one can imagine that certain problems will occur. At the same
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pj+1,2k = pj,k pj+1,2k+1

(a) (b)

Figure 3.7: Interpolatory refinement scheme. (a) One step of DD Refinement scheme on sphere.
(b) Successive iterations of DD Refinement for SO3 valued data.

time, it is conceivable that the data all lie inside such a neighborhood, but the imputed point
lies outside that neighborhood, in which case, additional problems might be anticipated.

There is also an untidy aspect, in that we must apparently make a choice of coordinates in
Tp0(M), and it is conceivable that this affects the results of our procedure in some way. This
turns out not to be a problem; the approach is invariant to linear changes of coordinates on the
tangent space.

3.2.2 An Interpolatory Pyramid Transform for M-valued data

Given an interpolatory refinement scheme for M -valued data, we can construct a pyramid trans-
form for function p : R �→ M very analogous to the classical interpolatory wavelet transform.

We start from data sampled at the coarsest scale β0,k = p(k); then we apply one scale of
refinement, obtaining imputed midpoints p̃(k + 1/2). We then compare the imputed midpoints
to the actual ones:

α0,k = Logp̃(k+1/2)(p(k + 1/2)), k ∈ Z.

We can repeat this process at finer scales, starting from point samples at scale j,

βj,k ≡ p(k/2j), k ∈ Z,

using these to impute samples halfway in between:

p̃((k + 1/2)/2j), k ∈ Z,

and defining the wavelet coefficients

αj,k = Logp̃(k+1/2)(p(k + 1/2)), k ∈ Z.

From the coarse-scale samples (β0,k) and the wavelet coefficients ((αj,k)k∈Z)j≥0 one can
recover p at all dyadic rationals. Indeed, one takes the coarse-scale samples (β0,k), imputes data
at the half-integers, getting (β̃1,2k+1)k, and then sets

β1,2k+1 = Expβ̃1,2k+1
(α0,k), k ∈ Z.
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Figure 3.8: (a) Motion on sphere consisting of two segments, each one part of a great circle. (b)
Frobenius norm of S2 wavelet coefficients as a function of scale and location.

Equipped then with values of p at the half-integers, one again applies two-scale refinement to
get imputed values (β̃2,k)k. The values at the fourth-integers are available via β2,2k = β1,k at
even sites, and

β2,2k+1 = Expβ̃2,2k+1
(α1,k).

And so on.
In Figure 3.8 we give a simple example, with M the sphere S2. A motion on the sphere

consists of two segments, each one part of a great circle. The wavelet coefficients are vectors.
The figure displays the Euclidean norm of the wavelet coefficients, as a function of scale and
location. At each scale, there are only a few nonzero coefficients, and these all occur in the
vicinity of the ‘kink’ in the motion.

3.3 Midpoint-Interpolating Approach

We now develop the analog of average-interpolating wavelet transform for manifolds. Since
‘averages’ are not immediately defined for manifolds, we define a convenient notion, the midpoint,
and the pyramid of midpoints. We then give the analogs of refinement and wavelet transform.

3.3.1 Midpoint Pyramid

We now define a pyramid of values mj,k ∈ M measuring (in some vague sense) ‘midpoints’ of
an M -valued function over intervals Ij,k. This is based a coarsening operator which generates
midpoints of point-pairs.

Given a pair of points m0, m1 ∈ M , suppose that there is a unique geodesic connecting them.
Then there is a unique midpoint on that geodesic, m1/2, say. If M is Euclidean space, of course,
then m1/2 is just the arithmetic mean. More generally, we can regard this as a replacement
for the arithmetic mean of two points in a manifold, and label it Mid{m0, m1}; but it is only
well-defined when m0 and m1 are closer together than the injectivity radius of the manifold.

A midpoint pyramid in M , ((mj,k)k)j≥j0) is a set of points in M obeying the coarsening
relation

mj,k = Mid{mj+1,2k, mj+1,2k+1}, k ∈ Z, j ≥ j0.
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It is assumed that Mid is always well-defined here, i.e. that every pair has a unique midpoint.
In practice this means that the coarsest-scale j0 is constrained to not be too large, so that the
midpoints stay close to the data in the associated dyadic intervals.

3.3.2 Midpoint-Interpolating Refinement

The Midpoint-Interpolating (MI) refinement scheme for M -valued data starts from values m0,k

at the integers k, which will be called ‘midpoints’ for reasons given below. It then generates
imputed midpoints m̃j,k at all finer scales through a series of stages, repeatedly applying a
two-stage refinement scheme which might be called ‘Average Interpolation in Tangent Space’.

At the first stage, a midpoint m̃1,k is imputed for each dyadic interval Ij,k of length 1/2 by
the following device. We fix D as an even integer, for example 4. We then, for each k at the
coarse scale, collect the D + 1 coarse-scale values m0,k′ corresponding to dyadic intervals closest
to Ij,k. We convert those values to tangent vectors in Tp0(M), where p0 = mj,k, via

θ(�) = Logp0(m0,k+�), (D − 1)/2 ≤ � ≤ (D + 1)/2.

We again adopt coordinates (τ i) on Tp0(M) and fit a polynomial πi
0,k(t) to each coordinate

separately, by average-interpolation:

Ave{πi
0,k(t) : t ∈ I0,k′} = τ i(�), |k′ − k| < (D + 1)/2.

We then impute averages to the coordinates at the finer scale:

τ̃ i
1,2k+� = Ave{πi

0,k(t) : t ∈ I1,2k+�}, � = 0, 1.

Using the coordinates, we impute vectors by

θ̃1,2k+� =
d∑

i=1

τ̃ i
1,2k+�ei, � = 0, 1.

Finally we jump back to the manifold

m̃1,2k+� = Expp0(θ̃1,2k+�), � = 0, 1.

This process is illustrated in Figure 3.9.
We now have available midpoints over dyadic intervals of length 1 and 1/2; by treating those

as givens and repeating the above steps we can impute midpoints at the intervals of length
1/4. Continuing in this way we get values at intervals of length 1/8, and so on. The process is
illustrated in Figure 3.10.

This process results in midpoints defined at all the dyadic intervals; it seems there is a unique
continuous function p̃(t) consistent with those averages.

In fact, more seems to be true: the refinement of a sequence of coarse-scale points on the
manifold β0,k produces an imputed result β̃j,k which has CR regularity, where R = R(D) is the
regularity of the underlying Deslauriers-Dubuc refinement scheme.

3.3.3 Midpoint-Interpolating Wavelet Transform

The midpoint-interpolating refinement scheme also leads to a wavelet transform, based on a
midpoint pyramid rather than an average pyramid. The two-scale refinement operator gives a
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Figure 3.9: Midpoint Interpolatory refinement scheme for M-valued data, at a single scale and
location. (a) Averages at five consecutive times k = −2,−1, 0, 1, 2; (b) Averages mapped to the
tangent plane by the Logarithm; (c) Fitted polynomial curve, and imputed averaged midpoints.
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Figure 3.10: MI Refinement. (a) One step of refinement on Sphere. (b) Several iterations on
SO3 data.
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way to pass from coarse-scale midpoints (mj,k)k to imputed fine-scale midpoints (m̃j+1,k)k. We
then define wavelet coefficients

αj,k = 2j/2Logm̃j+1,2k+1
(mj+1,2k+1), k ∈ Z, j ≥ 0.

These measure the deviation between the behavior of fine-scale midpoints and the anticipated
behavior imputed from coarse-scales. We also define coarse-scale coefficients

β0,k = m0,k.

Equipped with (β0,k)k and ((αj,k)k)j≥0, we can reconstruct p by the now-familiar pyramid
algorithm. We take the coarse-scale midpoints (β0,k) and coarse-scale wavelet coefficients (α0,k)
and combine them to produce midpoints (β1,k)k.

To carry this out, we simply apply the two-scale refinement operator to the (β0,k), obtaining
imputed midpoints (m̃1,k)k and then setting

β1,2k+1 = Expm̃1,2k+1
(2−j/2α0,k);

and defining each m1,2k+1 by the pyramid consistency relation

β0,k = Mid(β1,2k, β1,2k+1).

This reconstructs the midpoints at scale j = 1. Repeating this process, we obtain midpoints at
scale j = 2, then at scale j = 3, etc.

3.4 Properties of Wavelet Coefficients

3.4.1 Structural Properties

This approach makes vivid an important structural distinction between coarse-scale information
β0,k and the fine scale information αj,k. The βj,k always belong to the manifold M , while the
αj,k always belong to a tangent space Tj,k ≡ Tβ̃j+1,2k+1

(M). This generalizes the real-valued
case, where the manifold and tangent space are both copies of R, and so this distinction is not
evident.

Since the wavelet coefficients belong to a vector space, it makes perfect sense to scale them,
to operate on them with linear algebra, to quantize them, and even to set them to zero. After
such operations, applying the reconstruction algorithms discussed above will yield an object
which is slightly different; this can be put to use.

3.4.2 Inertial Motion

If p(t) describes a constant speed path along a geodesic, then all the interpolatory/midpoint
interpolatory wavelet coefficients vanish. Indeed, each consecutive sequence of D + 1 values in
the pyramid will correspond to equispaced points on the geodesic. Each sequence of equispaced
points on a geodesic will transform, under the logarithm map, into a straight line in the tan-
gent space. The DD/AI schemes both preserve straight lines (linear functions of t) [11, 12].
Accordingly, the imputed point in tangent space will lie along that same line, midway between
its neighbors; applying the exponential map, the imputed point on the manifold will lie on the
geodesic, midway between its neighbors at the coarser scale. The wavelet coefficients obey the
formula

αj,k = 2j/2Logβ̃j+1,2k+1
(βj+1,2k+1),
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which vanishes if βj+1,2k+1 is the geodesic midpoint of βj,k and βj,k+1 – as just shown.
Alternately, we can say that inertial motions have vanishing wavelet coefficients. Indeed,

inertial motions evolve within a manifold without external applied forces, and thus pursue
geodesic trajectories. Hence their wavelet coefficients vanish. Ultimately, this means that very
simple motions, with no active forces, are highly compressible, and require only coarse-scale
data to represent them.

3.4.3 Coefficient Decay

We measure the size of vectors αj,k in the tangent space Tj,k according to the Euclidean norm
‖αj,k‖2. Importantly, this measure of size is invariant to the choice of (orthogonal) basis for
Tj,k; it is also an intrinsic measure, agreeing with the geodesic distance between the coarse-
scale-derived imputation of fine scale behavior, β̃j+1,2k+1 and the actual value βj+1,k.

Suppose that M is a CR smooth manifold, with smoothness index R > 2, and that p(t)
describes an R-times differentiable path through M . Suppose also that the order D of the DD
or AI scheme is greater than R. Then the wavelet coefficients obey

‖αj,k‖2 ≤ C · 2−j(R+1/2), j ≥ 0, k ∈ Z.

These are in some sense exact analogs of comparable properties in the classical wavelet case,
and show that, for objects which are smooth, the wavelet coefficients decay geometrically with
scale.

3.4.4 Coefficients of Noise

The reader may remark that the coefficient normalization we have chosen, with 2j/2 factors,
in (3.1) is designed to make the wavelet coefficients similar to classical wavelet coefficients in
another way: so that, in the presence of ‘white noise’, they will be roughly stable as a function of
scale and position. To illustrate the scaling behavior of coefficients, we give an example of what
happens in the case of the sphere M = S2. Figure 3.11 illustrates behavior in three instances
cutting across smooth and noisy cases. First, it considers the MI wavelet coefficients of a ‘noise
sequence’ consisting of data defined by piecewise constant behavior on dyadic intervals IJ,k with
random values on those intervals. As can be seen, the size of typical wavelet coefficients in
that case is independent of scale. Second, it considers the MI wavelet coefficients for a smooth
function of time. As can be seen, the size of typical wavelet coefficients decays linearly on a
log-log scale, consistent with the previous subsection. Third, it considers a smooth function
with a certain degree of noise. As can be seen, the size of typical wavelet coefficients behave at
coarse scales like those of a smooth function and at fine scales like those of a pure noise.

4 Manifolds with Tractable Exp/Log Maps

An important special case of the above ‘general manifold’ viewpoint comes when M is a Rie-
mannian symmetric space. This special case gives a class of manifolds rich enough to model
all the data types we mentioned in the introduction, and small enough to be very tractable. A
Riemannian symmetric space [21, 24] is a Riemannian manifold with a globally-defined notion of
reflection symmetry. In such manifolds, each pair of points (p0, p1) with a well-defined midpoint
p1/2 defines a natural isometry about the midpoint, exchanging the roles of p0 and p1 and leav-
ing p1/2 fixed. We specialize to this case here, which has certain advantages when considering
midpoint-interpolation. We also specialize to the case where M is subspace or quotient space of
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Figure 3.11: S2-wavelet coefficients of noise, of a smooth curve and of a noisy curve.

the manifold GL(n) of n×n matrices. Our choices have the advantage that it is straightforward
to compute Log and Exp, typically involving just the matrix logarithm and matrix exponential.

In this section we review our manifolds of interest, first discussing the calculation of Log and
Exp maps, and then reviewing the connections of our work to Lie Algebras.

4.1 Simple Examples

M = R; the reals. Here Tp(M) is just R, and Expp0(θ) = p0 + θ, while Logp0(p1) = (p1 − p0).
Hence both Exp and Log are linear. Our formulations for M -valued data will, in this case, of
course reduce to the Deslauriers-Dubuc and Average-Interpolating schemes.

M = R+; the positive reals. Here Tp(M) = R, and Expp0(θ) = exp(θ)·p0, while Logp0(p1) =
log(p1/p0). Hence both Exp and Log involve the classical exponential and logarithm functions.
Our M -valued framework thus provides a notion of refinement and decomposition of strictly
positive data.

M = S1; the circle. We have two options. On the one hand, regard S1 as the unit circle
in the complex plane. Then Tp(M) = R, and Expp0(θ) = exp(

√−1θ) · p0, while Logp0(p1) =
arg(p1/p0), with all formulas interpreted as involving complex arithmetic and analytic functions.
On the other hand, fitting better with our general approach, instead regard S1 as the collection
of real-valued matrices

p =
[

c s
−s c

]
, c2 + s2 = 1.

Then Tp(M) is viewed as the collection of skew-hermitian matrices

θ =
[

0 a
−a 0

]
,

and we equip the tangent space with the Euclidean metric |a|, inducing a Riemannian metric.
Now Expp0(θ) = exp(θ)p0 and Logp0(p1) = log(p1p

−1
0 ), where products mean matrix products,
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p−1
0 denotes matrix inverse, and exp and log denote matrix exponential and logarithm. Both

approaches give equivalent results.

4.2 GL(n) and Subgroups

A simple but general class of cases comes from the General Linear group GL(n) of n × n real
matrices and its subgroups .

M = GL(n). Here Tp(M) is again GL(n), and the Riemannian metric is induced by the
Frobenius norm on the tangent space. Then Expp0(θ) = exp(θ)p0 and Logp0(p1) = log(p1p

−1
0 ),

where here products mean matrix products, p−1 denotes matrix inverse, and exp and log denote
matrix exponential and logarithm.

M = SO(n); the special orthogonal group. These are matrices in GL(n) with pT p = I
and Det(p) = 1. The tangent space Tp(M) is identified with the collection of skew-hermitian
matrices; for example, in the n = 3 case, these take the form

θ =

⎡
⎣ 0 a b

−a 0 c
−b −c 0

⎤
⎦ .

The Riemannian metric is again induced from the Frobenius norm on the tangent space. Again
Expp0(θ) = exp(θ)p0 and Logp0(p1) = log(p1p

−1
0 ), where again standard matrix interpretations

are applied.
M = SE(n); the special Euclidean group. Elements are matrices in GL(n+1) with the form

p =
[

U v
0 1

]
, U ∈ SO(n), v ∈ Rn.

These act on x ∈ Rn by p[x] = Ux+v. The tangent space Tp(M) is identified with the collection
of matrices

θ =
[

θ0 v
0 0

]
, θ0 Skew Hermitian, v ∈ Rn.

Again let the Riemannian metric be induced from the Frobenius norm on the tangent space.
Then Expp0(θ) = exp(θ)p0 and Logp0(p1) = log(p1p

−1
0 ), where again standard matrix interpre-

tations are applied.

4.3 Quotients of GL(n)

M = Sn−1; the sphere in Rn. Now M is the collection of vectors p ∈ Rn with unit length
‖p‖ = 1. This may be viewed as a quotient of SO(n), taking an orthogonal matrix U and
retaining only the first column; hence M ≈ SO(n)/SO(n− 1). The tangent space Tp(M) is the
collection of vectors orthogonal to p, and so is isomorphic to Rn−1. The Riemannian metric is
again induced from the Euclidean norm on the tangent space. Then

Expp0(θ) = cos(‖θ‖)p0 + sin(‖θ‖)θ/‖θ‖.

If p1, p0 in M are not antipodal, then v = p1 − 〈p1, p0〉p0 �= 0 and we can define

Logp0(p1) = arccos(〈p1, p0〉) · v/‖v‖2.

M = G(n, k), the Grassmanian manifold of k-planes in Rn [9, 21, 34]. For simplicity, let
2k ≤ n. The k-planes are in one-one relation with the orthoprojectors of rank k, and we choose

21



the orthoprojector representation. The tangent space can be identified with the collection of
matrices formed by differentiating a one-parameter family of such projectors pt. Such a derivative
has the representation

d

dt
pt|t=0 = UΘV T + V ΘUT ,

where U and V are n× k, Θ is positive diagonal, and UT V = 0. We regard the triple (U, Θ, V )
as a polar-coordinate representation of θ. The exponential is then

Expp0(θ) = UC2UT + UCSV T + V CSUT + V S2V T ,

where C = cos(Θ), S = sin(Θ). For the logarithm, θ = Logp0(p1), decompose the operator p0p1

by singular value decomposition, getting

p0p1 = USW T

where S is k × k diagonal, and U and W are n × k partial orthogonal. Suppose without loss
of generality that diagonal entries in S obey 0 < Sii < 1, set C = diag((1 − S2

ii)
1/2), and

Θ = arcsin(S). The matrix V = (W − UC)S−1 is orthogonal, and UT V = 0. Then (U, Θ, V ) is
the polar-coordinate representation of θ.

4.4 Symmetric Matrices

M = SPD(n). This is the class of symmetric positive-definite matrices p, with tangent
space Tp(M) the collection of symmetric matrices. The Riemannian metric is induced by
the locally weighted Frobenius norm‖p−1/2

0 θ‖F . The local weighting gives this a different
character from the GL(n) matrix case; the composition rule for positive definite matrices
(p0, p1) �→ p

1/2
0 p1p

1/2
0 also deviates from the GL(n) pattern. Here Expp0(θ) = p

1/2
0 exp(θ)p1/2

0

and Logp0(p1) = log(p−1/2
0 p1p

−1/2
0 ), where again standard matrix interpretations are applied.

4.5 Fine Point: Identification of Tangent Spaces.

The ‘literal’ tangent space Tp0 for a submanifold M embedded in RN is, of course, the space of
path derivatives

d

dt
pt |t=0

of smooth paths passing through p0. We have used this crude identification above only for
the case M = Sn−1, in which case it gives each Tp0(S

n−1) as a particular (n − 1)-dimensional
hyperplane in Rn. In other cases, we found it useful to pick a coordinate system in the ‘literal’
tangent space.

The Lie group examples GL(n), SO(n), SE(n) all have the structure that the tangent space
literally has the form

Tp0(G) = Ap0.

where G denotes the Lie group, A the corresponding Lie algebra, and Ap0 denotes right multi-
plication of matrices in A by p0. With this structure understood, we have identified the tangent
space with the Lie Algebra A. Thus for SO(3), we identify the tangent space at each point with
the algebra so(3) of 3 × 3 skew-hermitian matrices, and we write

Tp(SO(3)) � so(3),
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where it is now understood that we are speaking about so(3) as a coordinate system for the
literal tangent space. From this viewpoint, each literal tangent vector v = d

dtpt |t=0 is linked to
its coordinate vector θ by

v = θ · p0.

This identification gives every tangent space a common algebraic structure, and shows us that
the manifold G ‘looks the same’, in a very strong algebraic sense, at every point.

5 Implementation with Digital Data

So far, we have written as if our goal were to represent an M -valued function p of a univariate
continuum argument p : R �→ M . In reality, data will be discretely sampled over an interval
and might have a two-dimensional or higher-dimensional domain. We briefly review the issues
raised in adapting the above ideas to those settings.

5.1 Data on the Interval

It is well-understood how to adapt the interpolating and average-interpolating transforms to
‘life on the interval’ [10, 12].

In the interpolating case suppose we have equispaced data p(tJ,k), k = 0, . . . , 2J . We work
fine-to-coarse computing the wavelet coefficients (αJ−1,k)k then (αJ−2,k)k, etc. stopping at some
sufficiently coarse scale j0 where we have both wavelet coefficients (αj0,k)k and point values
βj0,k = p(tj0,k). There are 2j wavelet coefficients at scale j and 2j0 + 1 (βj0,k)k’s.

The wavelet coefficients are computed as in the earlier interpolating case. We take the D+1
sites k′ nearest to k, map the βj,k to the tangent space, fit interpolating polynomials to the
coordinates, impute at the midpoint tJ,2k+1, and define αJ−1,k as 2(J−1)/2Logp̃(tJ,2k+1)(p(tJ,2k+1)).
An important dissimilarity in the approach comes at the boundaries, t = 0 and t = 1, for which
there was no analog when the domain was R. The phrase “sites k′ nearest k” picks different
configurations for k near zero and 2j than at the interior of the interval. Near the middle of the
interval, the collection of sites k′ involved in the interpolation is symmetrically disposed about
the midpoint k. However, if k is 0 then all the sites k′ participating in the interpolatory fit will
lie to the right of k; while if k is 2j , all the sites k′ will lie to the left of k. Given these remarks,
interpolatory reconstruction works as one would expect, after making the obvious adaptations.

In the midpoint-interpolating case, we have fine-scale midpoint data mJ,k, k = 0, . . . , 2J − 1.
We then compute the midpoint pyramid by working fine-to-coarse, setting

mj−1,k = Mid(mj,2k, mj,2k+1), j ≥ j0, 0 ≤ k ≤ 2j−1.

We calculate the wavelet coefficients αj,k by a straightforward adaptation of earlier ideas. We
take the D+1 intervals Ij,k′ nearest to k, map the mj,k′ to the tangent space at mj,k, fit average-
interpolating polynomials to the coordinates, impute averages to the subinterval IJ,2k+1, and de-
fine αJ−1,k as 2(J−1)/2Logm̃J,2k+1

(mJ,2k+1). Again the approach self-modifies at the boundaries,
t = 0 and t = 1, for which there was no analog when the domain was R. The phrase “intervals
Ij,k′ nearest Ij,k” picks different configurations for k near zero and 2j than at the interior of the
interval. Near the middle of the interval, the collection of intervals Ij,k′ involved in the average
interpolation is symmetrically disposed about the interval Ij,k. However, if k is 0 then all other
intervals Ij,k′ participating in the interpolatory fit will lie to the right of Ij,k; while if k is 2j ,
all other intervals Ij,k′ will lie to the left of Ij,k. Given these remarks, midpoint-interpolatory
reconstruction works as one would expect.
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5.2 Two-Dimensional Data

Suppose now that we have data p(x, y) where (x, y) runs through an equispaced cartesian grid.
The preceding ideas adapt to this setting in the following way.

In the interpolatory case, we think of the operation that takes the array βj ≡ (βj,k)2
j

k=0 into
the two arrays βj−1 ≡ (βj−1,k)2

j−1

k=0 , αj−1 ≡ (αj,k)2
j−1

k=0 as a rewriting rule (βj−1, αj−1) = Rj(βj)
First, we define the two-dimensional point evaluation pyramid βj,k1,k2 = p(tj,k1 , tj,k2), where

0 ≤ ki ≤ 2j . We view this array, for one fixed scale j, as a matrix. Second, we apply rewriting
twice, once in each direction. We apply rewriting to each column of the matrix, creating a new
matrix; we then apply rewriting to each row of the matrix. Our result is a matrix with four
rectangular subpanels, corresponding to locations in the array involving ‘alpha’ or ‘beta’ in the
vertical direction, and ‘alpha’ or ‘beta’ in the horizontal direction. The output involving β in
each direction is used as input to the next coarser scale; while the output involving α in at
least one of the two stages is considered a wavelet coefficient αv

j,k1,k2
, where v ∈ {0, 1}2, the

label v indicating the directionality of the wavelet coefficient. Reconstruction is accomplished
by undoing the rewriting operations in a coarse-to-fine fashion. Average-interpolating analysis
works in a very similar fashion.

6 Examples of Multiscale Representation

We now give some simple examples of multiscale representations based on the above ideas.

6.1 A Trajectory on the Sphere

We continue with the earlier artificial example of the case M = S2. A ‘V’-shaped path on the
sphere is shown in panel (a) of Figure 3.8; it is actually a concatenation of two segments of great
circles. The wavelet coefficients are vectors αj,k ∈ R2, and we depict the Euclidean norm of
those vectors in panel (b), as a function of scale and location. It is evident that, at fine scales,
the nonzero coefficients only occur near the location of the ‘jerk’, where there is a transition
from one great circle to the other.

To underscore the fact that partial reconstructions based on only a few wavelet coefficients
can achieve substantial accuracy, we display in Figure 6.12 the results of reconstruction using
from 8 up to 1024 coefficients. It is evident that 20 coefficients already provide a good visual
representation.

6.2 Aircraft Headings, I

We now consider a dataset of aircraft orientations as a function of time. The data come from the
flight data recorder (‘black box’) of USAir Flight 427, a Boeing 737 which crashed in September,
1994. The data themselves were converted from Pitch/Roll/Yaw form (Euler angles [25]) to time
series of orientations in SO(3). The raw data are illustrated in panel (a) of Figure 6.13, and
display mostly orderly behavior, with two ‘bumps’ and then a catastrophic ‘swerve’ at the very
end. The wavelet coefficients are 3×3 matrices in so(3), and their Frobenius norms are displayed
in panel (b) Figure 6.13, as a function of scale and location. It is evident that the coefficients
are small except at the end of the time interval in question, when the crash occurred.
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Figure 6.12: Results of partial reconstruction using only 8 coarse-scale coefficients (left); re-
construction using only 28 intermediate wavelet coefficients (center); and the original, perfect
reconstruction from all 1024 coefficients (right).
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Figure 6.13: (a) Orientations versus time for US Air Flight 427 and (b) Frobenius norm of its
so(3)-wavelet coefficients.
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Figure 6.14: (a) Orientations versus time for a Boeing 737; (b) norms of its so(3)-wavelet
coefficients. Note the rapid decrease at finer scales.

6.3 Aircraft Headings, II

We consider another dataset of aircraft orientations as a function of time, this time with a
happier connotation. The data were supplied by Boeing Research Laboratories, and give a time
series of orientations from a normal flight of a Boeing 737. Some of the raw data are illustrated
in Figure 6.14 (a), 5 samples per second, and display only orderly behavior. A stretch of wavelet
coefficients (more properly, their Frobenius norms) is displayed in Figure 6.14 (b), as a function
of scale and location. It is clear from the near-constancy of wavelet coefficients at fine scales that
the minor changes in orientation happening at those scales are akin to white noise. However,
the coefficients are larger in the middle of the series indicating perhaps turbulence.
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Figure 6.15: Boeing 737 orientations, raw (a) and compressed 20:1 (b). Values of SO(3) com-
ponents (1,2)(1,3)(2,3) (top-bottom).
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Figure 6.16: Nonlinear approximation curve for Boeing 737 Data. Number of coefficients vs.
sum of error norms on a log log scale.
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Figure 6.17: (a) Time series of PSD(2)-valued data. (b) Frobenius norm of PSD(2) wavelet
coefficients.

6.4 Exchange rate data

We now consider a dataset p(t) of 2× 2 symmetric nonnegative-definite matrices. The matrices
are covariances between exchange rates for the US Dollar vs. Euro and the US Dollar vs. British
Pound, within a 10 day sliding window. Figure 6.17 shows the time series in which the symmetric
matrices are depicted as ellipses. The Frobenius norms of the wavelet coefficients are depicted
in panel (b) of Figure 6.17.

6.5 Diffusion Tensor Imaging data

We now consider a dataset p(x, y) with x and y equispaced spatial coordinates and p being 3×3
symmetric nonnegative-definite matrices, obtained by Diffusion Tensor Imaging. The data were
obtained from the laboratory of Brian Wandell at Stanford University. Panel (a) Figure 6.18
shows a segment of such data in which the symmetric matrices are depicted as concentration
ellipsoids E(p) = {v : vT pv ≤ 1}. The 2-D version of our MI transform was chosen with wavelet
coefficients as symmetric matrices. The Frobenius norm of the wavelet coefficients is given in
panel (b) of Figure 6.18. The characteristic behavior of wavelet coefficients of ordinary images
is clearly seen: fine scales have only a few big coefficients, ‘around the edges’.

6.6 Interferometric SAR data

We now consider a dataset p(x, y) with x and y equispaced spatial coordinates and p ∈ S1, ob-
tained by interferometric Synthetic Aperture Radar [4]. Figure 6.19 (a) shows the deformation
signature of Hector Mine, CA during the earthquake of Oct. 16, 1999. Each color cycle rep-
resent 2.8cm relative surface displacement. Figure 6.19 (b) shows the norms of the S1-wavelet
coefficients.

7 Applications

We now sketch some of the basic applications which can be developed using multiscale repre-
sentations of M -valued data.
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(a) (b)

Figure 6.18: (a) A fragment of PSD(3)-valued image data. Panel (b) Frobenius norms of PSD(3)
wavelet coefficients of full image.

(a) (b)

Figure 6.19: Panel(a) SAR interferogram (S1 valued data). (b) Norms of S1 wavelet coefficients.
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Figure 7.20: Largest and smallest eigencomponents of noisy SPD(3) data derived from Diffusion
Tensor Imaging (first, third) and after SPD(3)-wavelet denoising (second, fourth).

7.1 Data Compression

A standard application of wavelet analysis for R-valued signals is to data compression [16].
One applies a quantization and encoding scheme to the wavelet coefficients, generating a bit
stream which is later used to approximately reconstruct the wavelet coefficients and ultimately
an approximation to the original signal. Because the wavelet coefficients for M -valued data are
organized in a fashion similar to the ordinary wavelet coefficients, it is possible to use existing
ideas, like tree-coding, immediately in this context. To illustrate this, we consider the Boeing
737 data. These consist of 4096 observations of uneventful flight history over 819 seconds and
so are highly compressible. Figure 6.15 Panel (a) shows the values of SO(3) components, and
Panel (b) shows the values after 20:1 compression.

7.2 Noise Removal

Another standard application of wavelet analysis for R-valued signals is to noise removal [13].
One applies a thresholding to wavelet coefficients, setting to zero those coefficients below a
certain threshold. The resulting coefficients are used to reconstruct an object from which much
of the noise has been removed. Because the wavelet coefficients for M valued data are organized
in a fashion similar to the ordinary wavelet coefficients, it is possible to use existing ideas. One
has simply to set a threshold, this time for the Frobenius norm of the matrix-valued wavelet
coefficients.

To illustrate this, we consider panels (a) and (b) of Figure 7.20, which show noisy SPD(3)
data derived from Diffusion Tensor Imaging, more specifically the largest and smallest eigen-
component. Panels (c) and (d) show the result of wavelet denoising. Note the improved visual
appearance.

7.3 Stochastic Process Generation

Our approach easily allows us to generate stochastic processes on manifolds which are analogous
to Brownian motion and other ‘fractal’ models. To make such processes, we generate wavelet
coefficients which have (say) Gaussian-distributed coordinates and which are mutually indepen-
dent. We scale these coefficients according to level j, by a factor 2−jα, and take the coarsest
scale data either as zeros or generated according to some heuristic principle. An example is
given in Figure 7.21, which shows a quasi-Brownian motion in S2. Specifically, the case α = 1/2
behaves as a Brownian motion at fine scales, but not at the largest scales.

In this construction, the index α ≥ 0 controls the fractal dimension. If α = 0 we have a sort
of white noise; if α = 1/2 we have a pseudo Brownian motion.
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Figure 7.21: A quasi-Brownian motion on S2 generated from Gaussian random S2-wavelet
coefficients.

7.4 Contrast Enhancement

Another standard application of wavelet analysis for R-valued images is contrast enhancement
[33]. One applies a scalar nonlinearity to the wavelet coefficients at finer scales, increasing the
sizes of moderately large coefficients between certain thresholds. The resulting coefficients are
used to reconstruct an object with stronger edge information. Because the wavelet coefficients
for M -valued data are organized in a fashion similar to the ordinary wavelet coefficients, it is easy
to transfer this idea to the case of M -valued imagery. One has simply to apply a nonlinearity,
this time to the Euclidean norm of the vector wavelet coefficient.

To illustrate this, we consider panels (a) and (b) of Figure 7.22, which show SPD(3) data
derived from Diffusion Tensor Imaging, more specifically the largest and smallest eigencompo-
nent. Panels (c) and (d) show results from SPD(3)-wavelet-based contrast enhancement. Note
the improved visual appearance.

Figure 7.22: Largest and smallest eigencomponents of noisy SPD(3) data derived from Diffusion
Tensor Imaging (first, third) and after SPD(3)-wavelet contrast enhancement (second, fourth).

31



8 Discussion

8.1 Symmlab Software

SymmLab is a collection of Matlab functions which performs the computations described in this
article. In the spirit of reproducible research [3, 5], we are making it available to the research
community at http://www-stat.stanford.edu/̃ symmlab/. SymmLab has been used by the au-
thors to create the figures and tables used in this article, and the toolbox contains scripts which
will reproduce all the calculations of this paper. It includes about 200 Matlab files, datasets,
and demonstration scripts. The current version (SymmLab 090) is our initial release, and acco-
modates data taking values in these manifolds:

• SO(3) – rotation matrices.

• S1, S2 – spheres in 2-space, 3-space.

• G(n, k) – k-planes in Rn.

• PSD(n) – n by n positive-definite matrices.

For this release, the data must either be observed at a sequence of equispaced ‘times’ or on
an n by n grid of ‘pixels’. The current version contains demonstration scripts which illustrate
the following concepts: multiscale representation, ‘wavelet coefficients’, noise removal, and data
compression.

8.2 Other Work on Manifold Representation

There are other approaches to refinement schemes on manifolds; The Wallner-Dyn work [35]
differs from our approach in that it requires only the ability to compute geodesics, not the
full Log/Exp formalism, and easily generates low-smoothness schemes. On the other hand, the
procedure proposed here accommodates very high-order approximation and appears to allow
arbitrarily high degrees of smoothness, by selection of D large; see Section 8.3 below.

We are aware of work in progress on manifold-valued data by Peter Oswald of International
University Bremen and by Thomas Yu of Rensselaer Polytechnic Institute, as an adjunct [36, 37].
We also mention that, although we have not pursued it here, our work can easily generate
refinement schemes for quaternions. Quaternionic splines are popular in computer graphics,
essentially because quaternions may be used to represent SO(3)-valued data. An entry into this
literature may be provided by [2, 22, 23, 30] and subsequent literature.

8.3 Smoothness Equivalence Conjecture

It appears to be the case that the refinement schemes for M -valued data have the same regularity
as their R-valued counterparts. We say this based on numerous experiments with a range of
manifolds. A typical case was provided by M = SO(3). We considered a 32-long sequence
p(k) = I for −16 ≤ k < 16, k �= 0, and p(0) = exp(θ(0)), where

θ(0) =

⎡
⎣ 0 0.1 0.1

−0.1 0 0.1
−0.1 −0.1 0

⎤
⎦ .

In words, a slight pitch, roll, and yaw are experienced at time zero, but at other times the
orientation is static. We refined this sequence using the M -interpolatory scheme based on
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Figure 8.23: Panels – successive generations of interpolatory (DD) refinement on SO(3), as seen
through the behavior of the (1, 2) matrix entry. Note similarity to Figure 2.2.

Deslauriers-Dubuc in the tangent space with D = 3. The results are shown in Figure 8.23,
giving the 1, 2 coordinate of the 3× 3 matrix LogI(p(tj,k)). The various iterations are displayed
in separate panels. Notice the striking similarity between the apparent refinement limit and the
ordinary Deslauriers-Dubuc refinement limit seen earlier in Figure 2.2.

We also refined using the midpoint-interpolating scheme based on Average-Interpolation with
D = 6 in the tangent space. Again note the striking similarity between the apparent refinement
limit and the ordinary Average-Interpolating refinement limit seen earlier in Figure 2.4. Other
entries, i.e. (1, 3) and (2, 3), behave similarly, as do the entries seen for other data types e.g.
S1, S2.

It seems likely that one could prove that these manifold-based refinement schemes have limits
with the same smoothness as their classical counterparts for M = R. Roughly speaking, all that
is needed is that each coarse-scale neighborhood |k−k′| < (D+1)/2 be all contained in a ball of
sufficiently small geodesic radius. (If pairs of points in one coarse-scale neighborhood are allowed
to exceed the injectivity radius, the refinement scheme might be poorly-defined.) In fact, one
can easily prove the smoothness equivalence for M = R+ and M = S1. It is also empirically
verified for all the other cases. A thorough theoretical investigation seems called for, perhaps
using the methods of [35].

This work defines nonlinear refinement schemes, therefore it should be noted that there
are, outside the M -valued data context, numerous researchers developing methods for analyzing
nonlinear refinement. Some of this can be traced to median-interpolating refinement schemes
[18, 19, 28, 29], others to nonlinear schemes for ENO interpolation [6], surface subdivision [8],
and other applications [27]. We anticipate that the ideas and tools developed in those papers
should be highly relevant to resolving the smoothness equivalence conjecture.

8.4 The Repeated Midpoint Operator

An apparently novel feature of our approach is the use of the midpoint pyramid as a method
of summarizing manifold-valued data. At the center of this suggestion is, implicitly, the idea
that the repeated midpoint is a good summary of noisy manifold-valued data, comparable in
quality to the average for real-valued data. Let’s make this more explicit. Suppose we have data
p(1), . . . , p(n), taking values in M . We desire a measure of central tendency µn(p(1), . . . , p(n))
taking values in M and being well-calibrated:

µn(p0, p0, . . . , p0) = p0; (8.1)
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Figure 8.24: Panels – successive generations of midpoint-interpolatory (MI) refinement on SO(3),
as seen through the behavior of the (1, 2) matrix entry. Note similarity to Figure 2.4.

if the p(i) are random perturbations of a single p0, p(i) = Expp0(θ(i)), with θ(i) independently
and identically distributed with mean 0, then a law of large numbers

µn(p(1), . . . , p(n)) →P p0, n → ∞. (8.2)

We might even desire more,

E(dist2(µn, p0)) = O(n−1), n → ∞, (8.3)

where dist denotes geodesic distance. If M is acted on by a group G of transformations g, we
also desire G-equivariance:

µn(gp(1), . . . , gp(n)) = gµn(p(1), . . . , p(n)). (8.4)

Note that for M = R and µn the simple arithmetic average, we get all these properties (with G
the ax + b group of affine coordinate changes). The simple average has another property: the
average of a linear function is just the midpoint of the function. In the M -valued case we could
put this as follows if π(t) is a geodesic in M

µn(p(1), . . . , p(n)) = p((n − 1)/2). (8.5)

In effect, the midpoint pyramid we have proposed defines a functional µn for n dyadic,
n = 2j , for some j ∈ Z, by recursive application of midpoints. That is,

µn(p(1), . . . , p(n)) ≡ Mid[µn/2(p(1), . . . , p(n/2)), µn/2(p(n/2 + 1), . . . , p(n))].

Let’s call this the repeated midpoint functional. Given data p(i/n), i = 0, . . . , n−1 , the midpoint
pyramid values are

mj,k = µn/2j{p(i/n) : (i/n) ∈ Ij,k}.
Now clearly, the repeated midpoint functional has properties (8.1) and (8.5). For the spaces

SO(n), SE(n) and GL(n) which are also groups and hence act on themselves, we also have
(8.4). Extensive experiments reveal behavior entirely consistent with (8.2), in fact with (8.3).

There has recently been considerable interest in defining ‘means’ on manifolds, unfortunately
in most cases the ideas proposed are not very computationally efficient, for example an expensive
iterative process. In comparison, the repeated midpoint is highly efficient computationally and
has good properties. Further research into its properties seems called for.
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The notion of repeated application of nonlinear measures of central tendency has previously
been useful in the guise of median-interpolating wavelet transforms, where repeated medians of
3 have proved useful [18]; and in generalizations [19, 28, 29]. In this connection we note that
repeated medians have been shown to have interesting statistical properties [31], showing that
some nonlinear pyramid summaries can be successfully analyzed.

References

[1] Matthew J. Ahlert, David L. Donoho, Iddo Drori, Inam Ur Rahman, and Victoria C.
Stodden. Symmlab web site. http://www-stat.stanford.edu/̃ symmlab/.

[2] Alan H. Barr, Bena Currin, Steven Gabriel, and John F. Hughes. Smooth interpolation
of orientations with angular velocity constraints using quaternions. Computer Graphics,
26(2):313–320, 1992.

[3] Jon Buckheit, Maureen Clerc, David L. Donoho, Mark Reynold Duncan, Xiaoming Huo,
Iain Johnstone, Jerome Kalifa, Ofer Levi, Stephane Mallat, and Thomas Yu. Wavelab web
site. http://www-stat.stanford.edu/̃ wavelab/.

[4] Curtis W. Chen and Howard A. Zebker. Two-dimensional phase unwrapping with use of
statistical models for cost functions in nonlinear optimization. J. Optical Society of America
A, 18(2):338–351, 2001.

[5] Sou Cheng Choi, David L. Donoho, Ana Georgina Flesia, Xiaoming Huo, Ofer Levi, and
Danzhu Shi. Beamlab web site. http://www-stat.stanford.edu/̃ beamlab/.

[6] Albert Cohen, Nira Dyn, and Basarab Matei. Quasilinear subdivision schemes with appli-
cations to ENO interpolation. Technical report, 2001.

[7] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.

[8] Ingrid Daubechies, Olof Runborg, and Wim Sweldens. Normal multiresolution approxima-
tion of curves. Technical report, Bell Labs, 2002.

[9] Chandler Davis and William M. Kahan. The rotation of eigenvectors by a perturbation,
III. SIAM J. Numer. Anal., 7(1):1–46, 1970.

[10] Gilles Deslaurier and Serge Dubuc. Symmetric iterative interpolation processes. Construc-
tive Approximation, 5(1):49–68, 1989.

[11] David L. Donoho. Interpolating wavelet transforms. Technical report, Department of
Statistics, Stanford University, 1992.

[12] David L. Donoho. Smooth wavelet decompositions with blocky coefficient kernels. In
Larry L. Schumaker and Glenn Webb, editors, Recent Advances in Wavelet Analysis, pages
259–308. Academic Press, Boston, 1993.

[13] David L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information
Theory, 41(3):613–627, 1995.

[14] David L. Donoho, Nira Dyn, Peter Schroeder, and Victoria C. Stodden. Presentation:
Multiscale representation of equispaced data taking values in a lie group. In Approximation
Theory at 60: Conference in Honor of R. A. DeVore, Charleston SC, May 2001.

35



[15] David L. Donoho, Nira Dyn, Peter Schroeder, and Victoria C. Stodden. Presentation:
Multiscale representation of equispaced data taking values in a symmetric space. In Curves
and Surfaces IV, Saint Malo, France, June 2002.

[16] David L. Donoho, Martin Vetterli, Ron A. DeVore, and Ingrid Daubechies. Data compres-
sion and harmonic analysis. IEEE Transactions on Information Theory, 44(6):2435–2476,
1998.

[17] David L. Donoho and Thomas Pok-Yin Yu. Deslauriers-Dubuc: Ten Years After, pages
355–369. CRM Proceedings and Lecture Notes. American Mathematical Society, 1999.

[18] David L. Donoho and Thomas Pok-Yin Yu. Nonlinear pyramid transforms based on median-
interpolation. SIAM Journal of Math. Anal., 31(5):1030–1061, 2000.

[19] Tim N. T. Goodman and Thomas Pok-Yin Yu. Interpolation of medians. Advances in
Computational Mathematics, 11(1):1–10, 1999.

[20] Ami Harten. Multiresolution representation of cell averaged data. Technical report, UCLA
Computational and Applied Mathematics Report 94-21, 1994.

[21] Sigurdur Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces. American
Mathematical Society, Providence, R.I., 2001.

[22] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A C2-continuous B-spline quater-
nion curve interpolating a given sequence of solid orientations. In CA ’95: Proceedings of
the Computer Animation, pages 72–81, 1995.

[23] Myung-Soo Kim and Kee-Won Nam. Interpolating solid orientations with circular blending
quaternion curves. Computer-aided Design, 27(5):385–398, 1995.

[24] Serge Lang. Introduction to Differentiable Manifolds. Springer-Verlag, New York, second
edition, 2002.
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