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Making Massive Computational Experiments
Painless

Hatef Monajemi, David L. Donoho and Victoria Stodden

Abstract—The increasing availability of access to large-
scale computing clusters - for example via the cloud - is
changing the way scientific research can be conducted, en-
abling experiments of a scale and scope that would have been
inconceivable several years ago. An ambitious data scientist
today can carry out projects involving several million CPU
hours. In the near future, we anticipate a typical Ph.D. in
computational science may be expected or even required
to offer findings based on at least 1 million CPU hours of
computations.

The massive scale of these soon-to-be-upon-us computa-
tional experiments demands that we change how we orga-
nize our experimental practices. Traditionally, and still the
dominant paradigm today, the end-to-end process of experi-
ment design and execution involves a significant amount of
manual intervention and situational tweaking, cutting and
pasting, and the use of disparate disconnected tools, much
of which is undocumented and easily lost. This makes it
difficult to detect and understand possible failure points in
the computational workflow, making it virtually impossible
to correct, let alone simply rerun the experiment. This is
an amazing state of affairs, considering the ubiquity of
error in scientific computation and in research generally.
Following such unstructured and undocumented research
practices limits the ability of the researcher to exploit cluster
and cloud-based paradigms, as each increase in scale under
the dominant paradigm is likely to lead to ever more errors
and misunderstandings.

A better paradigm will integrate the design of large exper-
iments seamlessly with job management, output harvesting,
data analysis, reporting, and publication of code and data. In
particular such a paradigm would submerge the details of all
the processing, harvesting, and management while exposing
transparently the description of the discovery process itself,
including details such as the parameter space exploration.
Reproducing any job would be a push-button affair, and
creating a new experiment from a previous one might involve
only changes of a line or two of code followed again by
push-button execution and reporting. Even though such
experiments would be operating at a much greater scale
than today, under such a paradigm they would be easier to
conduct, obtain a lower error rate, and offer a much greater
opportunity for ‘outsiders’ to understand the results.

In this article, we discuss the challenges of massive
computational experimentation and present a taxonomy of
some of the desiderata which such paradigms should offer.
We then present ClusterJob (CJ), an efficient computing envi-
ronment that we and other researchers have used to conduct
and share million-CPU-hour experiments in a painless and
reproducible way.
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TRADITIONALLY, science has involved two paths to
knowledge: deduction - formalized through proofs

in the mathematical sciences - and induction - mea-
surement and hypothesis driven experimentation in the
physical and biological sciences. Today, a third avenue
is emerging based on massive scientific computation.
Throughout research in the sciences and technology
we observe a significant use of large-scale computa-
tion: numerical wind tunnels, global circulation models,
Kaggle machine learning challenges, numerical oil field
reservoir simulations, and so on.

Whole disciplines are emerging where the important
research questions can only be studied by massive com-
putational experimentation. In field after field, questions
like “which algorithm performs better” or “which con-
figuration is optimal” or “what would be the trade-off
between goals A and B” are the main questions of the
moment, and can now in principle only be addressed by
large-scale computational experimentation. Mathemati-
cal analysis cannot provide a complete answer because
it has the power to study only very idealized (simplified)
situations and very idealized (simplified) interventions.
Physical experimentation is inapplicable in many cases
because the questions concern systems described in silico
or in historical databases rather than laboratory systems
which can be manipulated physically or chemically 1.
Even if physical experiments may be plausible in some
cases, they may be economically infeasible.

Successful examples of computation as a fundamental
method of scientific discovery abound. In [1] massive
computations solved a 30 year old puzzle in the design
of a particular protein, in [2], several million CFD sim-
ulations are conducted to find optimal design strategies
for oil field development, and in [3] and [4], we used
more than a million CPU hours to discover and docu-
ment fundamentally more practical sensing methods in
the area of Compressed Sensing.

Prediction challenges offer a rapidly expanding arena
of scientific activity that is also cementing the primacy
of massive computation. Well-known examples include
the protein structure prediction challenge [5] and the
Netflix challenge [6]. In a prediction challenge, a specific

1In some cases true experimentation is possible as in A/B testing
of web interfaces for example, however large scale computation is
emerging as an indispensable tool for a large variety of research
questions.
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processing task is formalized and some training data
are made public while some test data are sequestered.
Teams develop predictive models based on the public
data and submit their models to be scored robotically
on the sequestered test data. The scores are presented
on a leaderboard and the winner is the leader at the
conclusion of the challenge. Challenges have served as
the engine of progress over the last two decades of re-
search in language processing, object detection and bio-
metrics. Examples are Multiple Biometric Grand Chal-
lenge (MBGC) [7] and Large Scale Visual Recognition
Challenge (ILSVRC) [8]. A long series of such chal-
lenges improved for example the accuracy of speech-to-
text systems culminating in successful consumer speech
recognition apps, such as Siri, Echo and the Android’s
SpeechRecognizer.

Much of the current buzz about deep learning is
caused by the success of certain labs2 using deep learn-
ing tools to winning numerous challenges; this has in-
vested deep learning with great authority and charisma,
and made it a popular method for various prediction
tasks [9], [10].

Note that the traditional tools of scientific episte-
mology – mathematical analysis and physical experi-
ment – are effectively irrelevant to winning prediction
challenges; but the ability to run massive numbers of
computational experiments is integral to success.3

The emergence of massive computation as a funda-
mental strategy for the generation of new knowledge is
driven by the explosion of computational resources glob-
ally, as evidenced by open-source software, ubiquitous
internet connectivity, massively distributed databases,
and cloud computing. Some globally significant organi-
zations (AWS, Google, Microsoft) manage clusters with
millions of CPUs, which an individual can purchase.

Despite the amazing capacity for brute work that such
facilities offer, and the economic feasibility for many
researchers, the perceived complexity of using such
facilities is a barrier preventing many scientists from
conducting ambitious computational research at scales
which are now possible.

Many of today’s active researchers have grown up in
the era of laptop- and desktop- computers running quan-
titative programming environments like Matlab and R.
Such scientists subscribe to a paradigm of interactive
computing, where small snippets of code are pasted into
the console listener and output plots and printouts are
studied, and maybe a bit of text or graphics is cut and
pasted from the output window into a digital notebook
before the next interactive task is formulated. Later,
using a word processor, the researcher turns author

2An example is the Geoffrey Hinton’s lab in University of Toronto
who won the Kaggle’s Merck Molecular Activity Challenge.

3Moreover, winning one single challenge might conceivably be a
fluke; but when a long series of seriously-designed challenges succeeds
in transforming a classifier error rate from (say) 50% to (say) 1%, it’s
hard to claim that challenges are not engines of scientific progress.

and will copy-paste items from the notebook into the
technical report describing the experiment’s results.

Interactive computing is intuitive, intimate, familiar
and has been relentlessly promoted both in academic
training, in academic texts, and by makers of quanti-
tative programming environments. It also matches the
habits and mindset many people have developed from
interacting with their smartphones over e-mail and web
browsing. Many working scientists imagine that today’s
interactive computing paradigm is the best of all pos-
sible worlds and couldn’t imagine wanting to operate
otherwise.

This dominance of this ‘interactive computing’
paradigm is the biggest barrier we face in explaining
the impending transition to large-scale computer ex-
periments. In our opinion, the unspoken idea that it
is natural to run snippets of code interactively and to
cut and paste results into word processing files, while
pervasive, is also problematic scientific ideation. No-one
who thinks this way could possibly emerge a winner
of one of today’s important prediction challenges. Nor
would someone who thinks this way be able to complete
a large-scale 1 million CPU hour computing project
of the kind now becoming standard for Ph.D’s in the
computational fields; they would no doubt be unable to
keep track of the massive volume of work required, to
fix the inevitable errors that crop up in anyone’s large-
scale projects, resulting in either an unfinished project,
or a set of incorrect results.

It’s utterly crucial to move the research community
toward the following three new expectations about the
role of computing in modern research:

1) The most central contribution a researcher can
make is to dream up new computational experiments
- a success metric, a baseline system, and a set of
computations exploring variations of the baseline
model, for example varying underlying parameters
and/or models and improving the given metric.

2) A researcher can make her/his reputation by car-
rying out such an experiment exhaustively and at
scale with impeccable technique.

3) The “royal road” to scientific reputation goes
through assembling and/or building tools enabling
impeccable technique and outstanding productiv-
ity in carrying out such massive computational
experiments.

In some fields, especially in machine-learning prediction
challenges, we believe these three expectations are al-
ready endemic. Because of what we are about to say
next, we believe that these three expectations will de-
velop over time in field after field.

We are confident that a new paradigm is emerging
that will make massive computationally intensive exper-
iments painless; it will also make it possible to really
understand what took place in such large experiments,
to believe in the definitive nature of results of such
experiments, and begin to depend on them as reliable
science in the way we today depend on mathematical

https://www.researchgate.net/publication/303748578_ImageNet_Large_Scale_Visual_Recognition_Challenge?el=1_x_8&enrichId=rgreq-25b024485775225c90aafe91295d204e-XXX&enrichSource=Y292ZXJQYWdlOzMxMDAyMTIzODtBUzo0Mjc3ODAxNDkxMjUxMjNAMTQ3OTAwMjE0MzI5Mg==
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proofs. The new paradigm - once it crystallizes and
spreads widely - will drastically improve the quality and
productivity of computational science. We don’t claim to
fully formulate or exhaustively discuss this paradigm in
this short paper, but we do hope to explain our own
efforts pointing in this direction, and to contrast them
with other efforts known to us.

In our telling, a computational experiment involves:

1) Precise specification which includes defining a per-
formance metric and a range or grid of different
systems to be compared.

2) Distribution and management of all the jobs implicitly
required in 1).

3) Harvesting of all the data generated by all the jobs
in 2).

4) Analysis of the data produced by 3).
5) Reporting and dissemination of results.

To truly exploit the power of massive computations,
it becomes crucial to automate all these components;
squeezing out all the friction, complexity, and sources of
ambiguity and misunderstanding. Automation of com-
putational experimentation has long been considered for
discovery [11].

In our opinion, the sought-after paradigm will take
the form of an experiment-definition system (EDS), where
the conduct of the experiment follows inexorably and
automatically from the mere definition of the experiment
itself. In detail such an EDS would satisfy the following
desiderata:

• Legibility: The EDS allows the specification of ex-
periments and their end goal in a human-readable
way which stands apart from details about how the
experiments take place.

• Simplicity: The EDS should be easy to use, setting
off large amounts of computational work essentially
as easily as pushing a single button.

• Productivity: Roughly speaking, all the tedium that
has been historically involved in running large-scale
computing experiments, such as the baby sitting in-
volved in managing job execution and data harvest-
ing, will be obviated. Researchers will instead spend
their time on designing interesting experiments and
reporting on their outcomes.

• Durability: Experimental processes and outcomes
will be preserved in such a way that can be easily
retrieved at a later time.

• Transparency: It can easily be understood post facto
where each component data value came from, what
the actual parameters of every computation were,
etc. The system is in some sense self describing,
including about what processes have run, how their
execution went, and what data were accessed.

• Reproducibility: All the required tasks happen in
a reproducible way. Computations can be rerun,
and even variations of computations can be forked
where needed. The code and data underlying a
computation can be effortlessly exposed to outsiders
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Fig. 1. Cartoon of ClusterJob

whenever the researcher wishes to do so; and be-
cause of the transparency just discussed, outsiders
can understand and build upon computational re-
sults.

• Scalability: The EDS should accommodate massive
scaling-up of experiments, moving from one cluster
to another, or to the cloud with ease.

To facilitate massive computational experimentation
for our research, we have developed ClusterJob (CJ)
[12], an automated computing environment that makes
inroads into implementing each of these features.

I. ClusterJob

ClusterJob (CJ) is an open-source software system that
allows researchers to conduct massive computational ex-
periments in a painless and reproducible way. CJ is used
in our research to run more than 50 million reproducible
computations on Stanford campus cluster. One can think
of CJ as a computational agent who is responsible for
scaling up and farming out all the computations across
compute clusters, tracking their progress, harvesting and
analyzing the produced data, and disseminating repro-
ducible results (see Figure 1).

CJ is built on the idea of producing reproducible
computational packages with distinct Package Identifiers
(PIDs). In the simplest case, a researcher writes a main
script, say in MATLAB, that implements a research ques-
tion. The script and possible dependencies are handed
to CJ, who is responsible for creating a reproducible
computational package with a specific PID (a SHA-1
code), allocating resources to execute the script, and
finally updating the researcher on the status and results
of the run. Through their PIDs, the CJ-confirmed pack-
ages can be published to a website, and shared with
and reproduced by other independent researchers when
needed.

CJ is easy-to-use and requires very little training. In
addition, the users do not have to learn a new program-
ming language on top of what they frequently use (e.g.,
MATLAB, R, Python).
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We can demonstrate CJ with an example. Consider
running an explanatory experiments involving many
variation of two parameters to calculate certain quantity
of interest, which in our example is the probability of
successful recovery by a convex optimization algorithm.
We first define the experiment in a simple and decipher-
able MATLAB script, say test.m:

% test.m
% This test code calculates the
% probability of successful
% reconstruction in compressed sensing.
% Author: Hatef Monajemi Nov 1 2016

file = ’results.txt’;
delta = 0.1:.1:.9;
epsilon = 0.02:0.02:0.98;
for i = 1:length(delta)
for j = 1:length(epsilon)
pr = computeProb(delta, epsilon);
fid = fopen(file,’at’);
fprintf(fid, ’%3.2f,%3.2f,%3.2f\n’, ...

delta,epsilon,pr);
fclose(fid)

end
end

This script computes probabilities at 441 points on a
(delta, epsilon) grid of size 9 × 49, and outputs a
text file (named results.txt). To run this experiment
in parallel on 441 cores of a remote cluster (named corn)
is as easy as typing the following CJ command in your
laptop’s console:

$ cj parrun test.m corn -dep bin -m "Test PT"

where bin is a directory that includes required depen-
dencies such as computeProb.m code.

Upon execution of this command, CJ submits 441
independent runs in a reproducible way to the corn
cluster and provides the user with a PID, which is a 40
digits long hexadecimal number. Having the PID, one
can track the progress of the runs, harvest the data, and
get other information about the experiments at any time
using various commands provided by CJ’s command
line interface. A typical short information log for an
experiment may look like:

pid 8ab7a5aafa1b8232cc3da05a7814bed1d21dd0aa
date: 2016-Oct-08 11:47:37 (GMT -07:00:00)
user: monajemi
agent: 2DCA5476-8197-11E6-B8C8-3A835C8A0BAC
account: monajemi@corn.stanford.edu
script: test.m
initial_flag: parrun

Test PT

An example of harvesting produced data is:

$ cj reduce results.txt 8ab7a5aa

which amalgamates all the data from individual runs
into a single results.txt file. The results can also be
stored in other accepted MATLAB output formats such
as .mat files.

In essence, the users do not feel much of a change;
they write their codes the way they normally would for
running on their local machine, yet CJ allows them to run
and manage massive amounts of computations on pow-
erful compute clusters in an effortless and reproducible
way.

The use of ClusterJob leads to more productive re-
search and helps researchers be more efficient. Here is
a list of what we consider to be the most important
benefits of using CJ:
• Facilitating submission of jobs to clusters: CJ removes

the need for the researcher to be familiar with
clusters. All that is needed is to know CJ commands,
which are straightforward.

• Work organization and easy access to old computations:
Many of us have experienced the trouble of finding
a code from an old project. When a computation is
done through CJ, the relative path and other infor-
mation regarding various computations are stored
by CJ and can easily be queried through their PID.

• Automatic parallelization: CJ can speed up computa-
tions by automatically distributing the task among
many cores of a computational cluster as long as the
tasks are independent (i.e., embarrassingly parallel).

• Automatic reproducibility: CJ automatically generates
computational packages in a reproducible way;
hence making computations reproducible comes at
no-cost.

• Easy sharing: The packages can be shared with others
via their PIDs in a simple and straight-forward way.

• Elimination of researcher’s degrees of freedom: Clusterjob
restricts researchers from changing the results of
computations. This prevents problems like p-value
hacking and data dredging.

To learn more about Clusterjob, the reader is referred to
http://clusterjob.org or the GitHub page https://github.
com/monajemi/clusterjob.

II. Other available systems
Several other systems exist today that help facilitate

computational experimentation in different ways. Some
that we are aware of include4:
• CodaLab[13]: A system for reproducible research that

uses Docker containers [14] to keep the full prove-
nance of an experiment in the form of immutable
bundles, which can later be included in worksheets
for final reporting. It also allows inclusion of data
from old bundles to new runs in a straight-forward
manner. By default, CodaLab runs the experiments
on Windows Azure workers.

• SDM [15]: A collection of tools developed by Stan-
ford VISTA lab for harvesting and analysis of neu-
roimaging data.

• Image Harvest (IH) [16]: A high-throughput im-
age processing system for the outputs of high-
throughput plant phenotyping platforms.

4This list is not meant to be exhaustive.

https://www.researchgate.net/publication/272845616_Data_management_to_support_reproducible_research?el=1_x_8&enrichId=rgreq-25b024485775225c90aafe91295d204e-XXX&enrichSource=Y292ZXJQYWdlOzMxMDAyMTIzODtBUzo0Mjc3ODAxNDkxMjUxMjNAMTQ3OTAwMjE0MzI5Mg==
https://www.researchgate.net/publication/301831062_Image_Harvest_An_open-source_platform_for_high-throughput_plant_image_processing_and_analysis?el=1_x_8&enrichId=rgreq-25b024485775225c90aafe91295d204e-XXX&enrichSource=Y292ZXJQYWdlOzMxMDAyMTIzODtBUzo0Mjc3ODAxNDkxMjUxMjNAMTQ3OTAwMjE0MzI5Mg==
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• VisTrails: A scientific workflow and provenance
management system that captures and makes avail-
able the computational steps in a research workflow.
[17].

• Kurator: A system that automates data curation
within the Kepler scientific workflow system [18].

• Torch: A scientific computing framework for ma-
chine learning algorithms on GPUs that uses LuaJIT
scripting language. The project is available online
via http://torch.ch

• Sumatra: A toolkit for automatically capturing the
details of computational experiments for repro-
ducibility [19].

• Pegasus: A workflow management system that man-
ages experiments deployed over distributed data
and computer resources. It is specifically designed
to operate at scale and deploy, for example, many
millions of computational steps in a chain of exper-
iments [20]. Pegasus was employed for example in
the recent LIGO Gravitational Waves discovery [21].

The focus in many of the systems mentioned above is
to facilitate “reproducibility” rather than to ease “scala-
bility”. They provide computing environments that en-
sure capturing the full record of a computational experi-
ment but do not give any clue to researchers on how they
can scale up their computational endeavors in a painless
and systematic way so as to assure knowledge. Those
that do provide tools for scalability (e.g., IH and Torch)
are either specialized or pay little attention to the re-
producibility aspect of experimentation. We believe that
both reproducibility and scalability are equally impor-
tant for massive computational experiments and indeed
they are highly intertwined: many issues associated with
reproducibility will be automatically resolved en route to
developing pain-free systems for massive computations.

The contours of the new computing paradigm for
doing massive computational experiments are clear but
the details can vary. We have presented our own effort
to build this new paradigm but many other implementa-
tions are plausible that satisfy the desiderata presented
in this article, and so we anticipate that there will be
many candidates before the scientific community comes
to an agreement.
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